Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries

2020 ◽  
Vol 595 ◽  
pp. 117549 ◽  
Author(s):  
Yun Yang ◽  
Qian Wu ◽  
Dong Wang ◽  
Chenchong Ma ◽  
Zheng Chen ◽  
...  
2010 ◽  
Vol 43 (3) ◽  
pp. 035501 ◽  
Author(s):  
Feng Wu ◽  
Ting Feng ◽  
Chuan Wu ◽  
Ying Bai ◽  
Lin Ye ◽  
...  

2020 ◽  
pp. 096739112091660
Author(s):  
Yao Xiao ◽  
Lixia Bao ◽  
Jingxin Lei

We prepared a solid polymer electrolyte (SPE) composed of a lithium borate salt and a polymer matrix, which can be employed for all-solid-state lithium-ion batteries. The lithium borate salt was made from lithium cations and bis (maleic acid) borate anions, and exhibits an excellent thermal stability as well as high ionic conductivity. The polymer matrix is an amorphous polymeric material having no crystalline regions, which is beneficial for the movement of lithium ions in the SPE. The polymer matrix also has good mechanical performance and thermal stability. Moreover, the SPE also has a relatively high ionic conductivity.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4469
Author(s):  
Robert Löwe ◽  
Thomas Hanemann ◽  
Tatiana Zinkevich ◽  
Andreas Hofmann

Polymerized ionic liquids (PIL) are an interesting substance class, which is discussed to transfer the outstanding properties and tunability of ionic liquids into a solid material. In this study we extend our previous research on ammonium based PIL and discuss the influence of additives and their usability as polymer electrolyte membranes for lithium ion batteries. The polymer electrolyte is thereby used as replacement for the commercially widespread system of a separator that is soaked with liquid electrolyte. The influence of the material composition on the ionic conductivity (via electrochemical impedance spectroscopy) and the diffusion coefficients (via pulsed-field-gradient nuclear magnetic resonance spectroscopy) were studied and cell tests with adapted membrane materials were performed. High amounts of the additional ionic liquid (IL) MPPyrr-TFSI (1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide) increased the ionic conductivity of the materials up to 1.3·10−4 S·cm−1 but made the usage of a cross-linker necessary to obtain mechanically stable membranes. The application of liquid electrolyte mixtures with ethylene carbonate (EC) and MPPyrr-TFSI decreased ionic conductivity values down to the 10−9 S·cm−1 range, but increased 7Li diffusion coefficients with increasing amounts of EC up to 1.7·10−10 m2·s−1. Cell tests with two membrane mixtures proofed that it is possible to build electrolyte membranes on basis of the polymerized ionic liquids, but also showed that further research is necessary to ensure stable and efficient cell cycling.


Sign in / Sign up

Export Citation Format

Share Document