Selective Oxidation of Ethylbenzene to Acetophenone Catalyzed by Mixed Oxide Spinels Derived from Layered Double Hydroxides

2012 ◽  
Vol 22 (5) ◽  
pp. 275-277 ◽  
Author(s):  
Wimonrat Trakarnpruk ◽  
Warangkana Kanjina
2015 ◽  
Vol 5 (11) ◽  
pp. 4991-4999 ◽  
Author(s):  
Xin Zhang ◽  
Zhuo Wang ◽  
Yuyin Tang ◽  
Nanli Qiao ◽  
Yang Li ◽  
...  

H2S was firstly adsorbed on the moderated basic site and then oxidized into elemental sulfur by Fe3+.


2021 ◽  
Vol 609 ◽  
pp. 117929
Author(s):  
Iqra Zubair Awan ◽  
Giada Beltrami ◽  
Danilo Bonincontro ◽  
Olinda Gimello ◽  
Thomas Cacciaguerra ◽  
...  

2016 ◽  
Vol 478 ◽  
pp. 374-383 ◽  
Author(s):  
Kelly Aparecida Dias de Freitas Castro ◽  
Fernando Wypych ◽  
Ariana Antonangelo ◽  
Karen Mary Mantovani ◽  
Alesandro Bail ◽  
...  

2008 ◽  
Vol 73 (8-9) ◽  
pp. 1045-1060 ◽  
Author(s):  
Lucie Obalová ◽  
František Kovanda ◽  
Květuše Jirátová ◽  
Kateřina Pacultová ◽  
Zdenek Lacný

The results of catalytic decomposition of N2O over mixed oxide catalysts obtained by calcination of layered double hydroxides (LDHs) are summarized. Mixed oxides were prepared by thermal treatment (500 °C) of coprecipitated LDH precursors with general chemical composition of MII1-xMIIIx(OH)2(CO3)x/2·yH2O, where MII was Ni, Co, Cu and/or Mg, MIII was Mn, Fe and/or Al, and the MII/MIII molar ratio was adjusted to 2. The influence of chemical composition of the MII-MIII mixed oxide catalysts on their activity and stability in N2O decomposition was examined. The highest N2O conversion was reached over Ni-Al (4:2) and Co-Mn-Al (4:1:1) catalysts. Their suitability for practical application was proved in simulated process stream in the presence of O2, NO, NO2 and H2O. It was found that N2O conversion decreased with increasing amount of oxygen in the feed. The presence of NO in the feed caused a slight decrease in N2O conversion. A strong decrease in the reaction rate was observed over the Ni-Al catalyst in the presence of NO2 while no N2O conversion decrease was observed over the Co-Mn-Al catalyst. Water vapor inhibited the N2O decomposition over all tested catalysts. The obtained kinetic data for N2O decomposition in a simulated process stream over the Co-Mn-Al catalyst were used for a preliminary reactor design. The packed bed volume necessary for N2O emission abatement in a HNO3 production plant was calculated as 35 m3 for waste gas flow rate of 30 000 m3 h-1.


2012 ◽  
Vol 18 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Milica Hadnadjev-Kostic ◽  
Tatjana Vulic ◽  
Dmitar Zoric ◽  
Radmila Marinkovic-Neducin

Layered double hydroxides (LDHs) have been studied to a great extent as environmental-friendly complex materials that can be used as photocatalysts or photocatalyst supports. ZnAl layered double hydroxides and their derived mixed oxides were chosen for the investigation of photocatalytic performances in correlation with the UV intensities measured in the South Pannonia region. Low supersaturation coprecipitation method was used for the ZnAl LDH synthesis. For the characterization of LDH and thermal treated samples powder X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), nitrogen adsorption-desorption were used. The decomposition of azodye, methylene blue was chosen as photocatalytic test reaction. The study showed that the ZnAl mixed oxide obtained by thermal decomposition of ZnAl LDH has stable activity in the broader UV light irradiation range characterizing the selected region. Photocatalytic activity could be mainly attributed to the ZnO phase, detected both in LDH and thermally treated samples. The study showed that the ZnAl mixed oxide obtained by the calcination of ZnAl LDH has a stable activity within the measured UV light irradiation range; whereas the parent ZnAl LDH catalyst did not perform satisfactory when low UV irradiation intensity is implied.


Author(s):  
Ioan-Cezar Marcu ◽  
Adriana Urdă ◽  
Ionel Popescu ◽  
Vasile Hulea

This chapter is focused on the transition-metal-containing LDHs-based materials having potential applications in both catalytic selective oxidation for obtaining chemicals and intermediates, and complete oxidation as a promising valuable technology for the destruction of Volatile Organic Compounds (VOCs).


Sign in / Sign up

Export Citation Format

Share Document