organosolv pulping
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 842
Author(s):  
Michel Bergs ◽  
Yulia Monakhova ◽  
Bernd W. Diehl ◽  
Christopher Konow ◽  
Georg Völkering ◽  
...  

As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: β-O-4 linkage, B: phenylcoumaran, C: resinol, D: β-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70% and significantly lower in stem and mixture lignins at around 60% and almost 65%. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20% or more (maximum is M. sinensis Sin2 with over 30%). In the leaf-derived lignins, the proportions are significantly lower on average. Stem samples should be chosen if the highest possible lignin content is desired, specifically from the M. x giganteus genotype, which revealed lignin contents up to 27%. Due to the better frost resistance and higher stem stability, M. nagara offers some advantages compared to M. x giganteus. Miscanthus crops are shown to be very attractive lignocellulose feedstock (LCF) for second generation biorefineries and lignin generation in Europe.


Author(s):  
Michel Bergs ◽  
Yulia Monakhova ◽  
Bernd Diehl ◽  
Christopher Konow ◽  
Goerg Völkering ◽  
...  

Abstract: As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: b-O-4 linkage, B: phenylcoumaran, C: resinol, D: b-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70 % and significantly lower in stem and mixture lignins at around 60 % and almost 65 %. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20 % or more (maximum is M. sinensis Sin2 with over 30 %). In the leaf-derived lignins, the proportions are significantly lower on average. Stem samples should be chosen if the highest possible lignin content is desired, specifically from the M. x giganteus genotype, which revealed lignin contents up to 27 %. Due to the better frost resistance and higher stem stability, M. nagara offers some advantages compared to M. x giganteus. Miscanthus crops are shown to be very attractive lignocellulose feedstock (LCF) for second generation biorefineries and lignin generation in Europe.


Author(s):  
Margit Schulze ◽  
Michel Bergs ◽  
Yulia Monakhova ◽  
Bernd Diehl ◽  
Christopher Konow ◽  
...  

As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: b-O-4 linkage, B: phenylcoumaran, C: resinol, D: b-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70 % and significantly lower in stem and mixture lignins at around 60 % and almost 65 %. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20 % or more (maximum is M. sinensis Sin2 with over 30 %). In the leaf-derived lignins, the proportions are significantly lower on averageStem samples should be chosen highest possible lignin content is desired, specifically from the M. x giganteus genotype which revealed lignin contents up to 27 %.


2021 ◽  
Vol 609 ◽  
pp. 117929
Author(s):  
Iqra Zubair Awan ◽  
Giada Beltrami ◽  
Danilo Bonincontro ◽  
Olinda Gimello ◽  
Thomas Cacciaguerra ◽  
...  

2021 ◽  
Author(s):  
Davide Di Francesco ◽  
Kiran Reddy Baddigam ◽  
Suthawan Muangmeesri ◽  
Joseph Samec

Organosolv pulping performed in a high-pressure Soxhlet extractor using carbon dioxide as a mild and recyclable acid is described. The system reached a liquid to wood ratio of 6.6 yielding...


2020 ◽  
Vol 1 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Pierre Betu Kasangana ◽  
Sagar Bhatta ◽  
Tatjana Stevanovic

Background: We have determined previously that the water extract of sugar maple bark contained an important quantity of a complex sugar. In this study, we investigated the organosolv pulping of pre-extracted bark to follow the acid conversion of sugars into major products, furfural and 5-hydroxymethyl-2-furfural (HMF), while comparing the structures of organosolv lignins. Methods: The bark particles were pre-extracted with an ethanol–water mixture or water only. The extractives-free barks were then converted into cellulosic pulp and lignin by a patented organosolv process. The composition of residual liquor was determined by using HPLC-UV. Results: The pre-extraction with water was more efficient for complex sugars recovery than with the ethanol–water system. HMF was determined to be more abundant in residual liquor than furfural after ethanol–water pre-extraction while their quantities were comparable in the residual liquor after water pre-extraction. The higher yield of HMF from ethanol–water pre-extracted bark (1.18%) than from water pre-extracted (0.69%) could be related to the efficiency of complex sugar removal during the pre-extraction step. Conclusions: The pre-extraction before pulping affected, at least in part, the composition of residual liquor in terms of HMF production. These results demonstrate how the bark can be converted into valuable products and intermediates for organic synthesis.


2020 ◽  
Vol 147 ◽  
pp. 112244 ◽  
Author(s):  
Camila Imlauer Vedoya ◽  
María Evangelina Vallejos ◽  
María Cristina Area ◽  
Fernando Esteban Felissia ◽  
Natalia Raffaeli ◽  
...  

2020 ◽  
Vol 20 (4) ◽  
pp. 120-124
Author(s):  
Glenn Mochamad Rayhan ◽  
Salsabila Fachrina ◽  
Rizka Amalia

Paper production has been identified with industries that destroy forests (deforestation). Utilizing alternative wood substitute raw materials, such as pineapple leaves can be one solution to the problem. Pineapple plants can produce more than 70 leaves with cellulose content in the leaves which reaches 69.5-71.5%, so it has the potential to be used as raw material for paper. The organosolv process was chosen as a pulp manufacturing process because it produces high purity in the byproducts (lignin and hemicellulose), high pulp yield, easy recovery of black liquor and no sulfur element, making it safer for the environment. This study aims to determine the most influential factors in the organosolv pulping process with a factorial experimental design method 23. Variables used include solvent types (ethanol and acetic acid), pulp cooking time (60 minutes and 110 minutes) and types of leaf dryness (wet leaves) and dried leaves). From the results of the analysis, the most influential factor in the organosolv pulping process is the type of solvent (ethanol). Optimal operating conditions were obtained for solvent ethanol, cooking time of 60 minutes with wet leaves, where cellulose content was 96.31% and lignin content decreased by 17.80% in dry pulp.


2020 ◽  
Vol 21 (5) ◽  
pp. 1929-1942 ◽  
Author(s):  
Jessica Rumpf ◽  
Xuan Tung Do ◽  
René Burger ◽  
Yulia B. Monakhova ◽  
Margit Schulze

Author(s):  
Kang-Jae Kim ◽  
Ji-Ae Ryu ◽  
Sa Rang Choi ◽  
Beom-Gyu Jung ◽  
Jung Myoung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document