scholarly journals Impact of dietary fat quantity and quality on skeletal muscle fatty acid metabolism in subjects with the metabolic syndrome

Metabolism ◽  
2012 ◽  
Vol 61 (11) ◽  
pp. 1554-1565 ◽  
Author(s):  
Anneke Jans ◽  
Anneke M.J. van Hees ◽  
Ingrid M.F. Gjelstad ◽  
Lauren M. Sparks ◽  
Audrey C. Tierney ◽  
...  
2008 ◽  
Vol 197 (2) ◽  
pp. 189-204 ◽  
Author(s):  
David P Macfarlane ◽  
Shareen Forbes ◽  
Brian R Walker

Glucocorticoid hormones constitute an integral component of the response to stress, and many of the manifestations of glucocorticoid excess (Cushing's syndrome) are predictable on the basis of their acute effects to raise blood pressure, induce insulin resistance, increase protein catabolism and elevate plasma glucose. However, it appears to be a paradox that the acute lipolytic effect of glucocorticoids is not manifest in long-term weight loss in humans. The effects of glucocorticoids on glucose metabolism are well characterised, involving impaired peripheral glucose uptake and hepatic insulin resistance, and there is mounting evidence that subtle abnormalities in glucocorticoid concentrations in the plasma and/or in tissue sensitivity to glucocorticoids are important in metabolic syndrome. The effects of glucocorticoids on fatty acid metabolism are less well understood than their influence on glucose metabolism. In this article, we review the literature describing the effects of glucocorticoids on fatty acid metabolism, with particular reference to in vivo human studies. We consider the implications for contrasting acute versus chronic effects of glucocorticoids on fat accumulation, effects in different adipose depots and the potential role of glucocorticoid signalling in the pathogenesis and therapy of metabolic syndrome.


2010 ◽  
Vol 34 (5) ◽  
pp. 859-870 ◽  
Author(s):  
A M J van Hees ◽  
◽  
W H M Saris ◽  
G B Hul ◽  
N C Schaper ◽  
...  

2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


Sign in / Sign up

Export Citation Format

Share Document