scholarly journals Simultaneous Topology and Deposition Direction Optimization for Wire and Arc Additive Manufacturing

Author(s):  
V. Mishra ◽  
C. Ayas ◽  
M. Langelaar ◽  
F. Keulen
2021 ◽  
Author(s):  
Jayaprakash Sharma Panchagnula ◽  
Suryakumar Simhambhatla

Abstract Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld deposition (arc) based directed energy AM technique is attaining the more focus over commercially available powder bed fusion techniques. This is due to the capability of high deposition rates, high power and material utilization, simpler setup and less initial investment of arc based AM. Nevertheless, realization of sudden overhanging features through arc based weld deposition techniques is still a challenging task due to the necessity of support structures. The present work describes a novel methodology for producing complex metallic objects with sudden overhangs without using supports. This is possible by re-orienting the workpiece and/or deposition head at every instance using higher order kinematics (5-axis setup) to make sure the overhanging feature is in-line to the deposition direction. The proposed technique identifies the sudden overhangs form a CAD model (.stl) and generates an orthogonal tool path for deposition of the same. To validate this technique, objects with sudden overhangs (illustrative case studies) have been taken up for deposition. An In-house MATLAB routine has developed and presented for performing the same. Although this technique is suitable for any deposition process, it has been demonstrated using gas metal arc welding (GMAW) based weld-deposition, where the raw material to be deposited is in the form of a welding wire.


Author(s):  
Jan Dutkiewicz ◽  
Łukasz Rogal ◽  
Damian Kalita ◽  
Jakub Kawałko ◽  
Marek Stanisław Węglowski ◽  
...  

AbstractThe electron beam additive manufacturing (EBAM) method was applied in order to fabricate rectangular-shaped NiTi component. The process was performed using an electron beam welding system using wire feeder inside the vacuum chamber. NiTi wire containing 50.97 at.% Ni and showing martensitic transformation near room temperature was used. It allowed to obtain a good quality material consisting of columnar grains elongated into the built direction growing directly from the NiTi substrate, which is related to the epitaxial grain growth mechanism. As manufactured material showed martensitic and reverse transformations diffused over the temperature range from −10 to 44 °C, the applied aging at 500° C moved the transformation to higher temperatures and transformation peaks became sharper. The highest recoverable strain of about 3.5% was obtained in the as-deposited sample deformed along the deposition direction. In the case of deformation of the alloy aged at 500 °C for 2h, the formation of martensite occurs at significantly lower stress; however, at about 2.5% the stress begins to increase gradually and only a small shape recovery was observed due to a higher martensitic transformation temperature. In situ SEM tensile deformation in the direction perpendicular to deposition direction showed that the martensite began to appear at the surface of the sample and at the grain boundaries due to heterogeneous nucleation. In situ studies allowed to determine the following crystallographic relationships between B2 and B19’ martensite: (100)B2||(100)B19’ and (100) B2 || (011)B19’; (011)B2|| (001)B19’ and $${(011)}_{\mathrm{B}2}||{\left(11\bar{1 }\right)}_{\mathrm{B}1{9}^{\mathrm{^{\prime}}}}$$ ( 011 ) B 2 | | 11 1 ¯ B 1 9 ′ . Samples aged at 500 °C exhibited fully austenitic microstructure; however, with increasing degree of deformation, the formation of martensite was observed. The majority of needles were tilted about 45° with respect to the tensile direction, and the presence of type I (11 $$\bar{1 }$$ 1 ¯ ) invariant twin boundaries was observed at higher degrees of deformation.


2013 ◽  
Vol 22 (03) ◽  
pp. 180-187 ◽  
Author(s):  
J. Henke ◽  
J. T. Schantz ◽  
D. W. Hutmacher

ZusammenfassungDie Behandlung ausgedehnter Knochen-defekte nach Traumata oder durch Tumoren stellt nach wie vor eine signifikante Heraus-forderung im klinischen Alltag dar. Aufgrund der bestehenden Limitationen aktueller Therapiestandards haben Knochen-Tissue-Engineering (TE)-Verfahren zunehmend an Bedeutung gewonnen. Die Entwicklung von Additive-Manufacturing (AM)-Verfahren hat dabei eine grundlegende Innovation ausgelöst: Durch AM lassen sich dreidimensionale Gerüstträger in einem computergestützten Schichtfür-Schicht-Verfahren aus digitalen 3D-Vorlagen erstellen. Wurden mittels AM zunächst nur Modelle zur haptischen Darstellung knöcherner Pathologika und zur Planung von Operationen hergestellt, so ist es mit der Entwicklung nun möglich, detaillierte Scaffoldstrukturen zur Tissue-Engineering-Anwendung im Knochen zu fabrizieren. Die umfassende Kontrolle der internen Scaffoldstruktur und der äußeren Scaffoldmaße erlaubt eine Custom-made-Anwendung mit auf den individuellen Knochendefekt und die entsprechenden (mechanischen etc.) Anforderungen abgestimmten Konstrukten. Ein zukünftiges Feld ist das automatisierte ultrastrukturelle Design von TE-Konstrukten aus Scaffold-Biomaterialien in Kombination mit lebenden Zellen und biologisch aktiven Wachstumsfaktoren zur Nachbildung natürlicher (knöcherner) Organstrukturen.


Sign in / Sign up

Export Citation Format

Share Document