recoverable strain
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 1213 (1) ◽  
pp. 012002
Author(s):  
N Resnina ◽  
I A Palani ◽  
S Belyaev ◽  
R Bikbaev ◽  
Shalini Singh ◽  
...  

Abstract The influence of the annealing temperature on the recoverable strain variation on cooling and heating under a stress of 200 MPa was studied in the NiTi samples produced by wire arc additive manufacturing. The samples including the Ni-rich NiTi layer in the working length were annealed for 10 hours at various temperature from 450 to 600 °C. It is shown that an increase in annealing temperature leads to non-monontonic variation in the recoverable strain. This is caused by an increase in annealing temperature from 450 to 550 °C increases the volume fraction of Ni4Ti3 precipitates. As a result, the volume fraction of the NiTi phase undergoing the martensitic transformation and recoverable strain decrease. An increase in annealing temperature from 550 to 600 °C leads to a dissolving the Ni4Ti3 precipitates and formation of the Ni3Ti2 precipitates that increases the volume fraction of the NiTi phase and the recoverable strain.


2022 ◽  
Vol 1213 (1) ◽  
pp. 012001
Author(s):  
A V Sibirev ◽  
M V Alchibaev ◽  
I A Palani ◽  
S Jayachandran ◽  
A Sahu ◽  
...  

Abstract The aim of the paper was to study the one-way and two-way shape memory effects in the NiTi nanofilm/Kapton composite. 500 nm film of the Ni50Ti50 alloy was deposited to Kapton by flash evaporation. After deposition, the NiTi layer was amorphous and the sample was held at a temperature of 350 - 400 °C for two hours in vacuum to crystallize the NiTi layer. As deposited sample as well as samples after heat treatment were bent around the mandrel with various diameters at room temperature and subjected to heating – cooling – heating through a temperature range of the martensitic transformations. It was shown that as-deposited sample did not demonstrate the recoverable stain variation. At the same time, the heat treated sample demonstrated the one-way shape memory effect on heating and a maximum recoverable strain was found to be 2 %. The two-way shape memory effect was not observed on further cooling and heating.


Author(s):  
Agnieszka Brzoza-Kos ◽  
Eduard Cesari ◽  
Maciej Jakub Szczerba

AbstractThe effect of Cu addition on crystal structure, compressive properties and shape-memory effect of Ni50Mn25Ga25−xCux alloys was studied. With increasing Cu content, the type of crystal structure evolves following a sequence: L21 → 10M → 2M → 2M+γ. Addition of Cu significantly improves room temperature ductility. In polycrystalline Ni50Mn25Ga17Cu8 alloy, a full recoverable strain equal to 7 pct was achieved. High martensitic transformation temperature and large shape-memory effect makes this material potential candidate in high-temperature shape-memory applications.


Author(s):  
Rodolfo Lisboa Batalha ◽  
Vitor Eduardo Pinotti ◽  
Omar O. S. Alnoaimy ◽  
Weverson Capute Batalha ◽  
Tobias Gustmann ◽  
...  

AbstractThe Ti–35Nb–7Zr–5Ta (wt%, TNZT) alloy was reinforced with TiB2 and synthesized by L-PBF. The relatively small TiB2 particles change the solidification structure from cellular to columnar-dendritic and lead to submicron TiB precipitation in the β matrix. This results in pronounced grain refinement and reduction of texture. However, the microstructure of the additively manufactured TNZT-TiB2 is still different from the as-cast, unreinforced TNZT, which contains equiaxed and randomly oriented grains. The β phase is less stable in the as-cast samples, leading to stress-induced martensitic transformation and recoverable strain of 1.5%. The TNZT with 1 wt% of TiB2 presents significantly higher compressive strength (σYS = 495 MPa) compared to unreinforced samples (σYS = 430 MPa), without sacrificing ductility or altering Young’s modulus (E ≈ 46 GPa). The addition of a small fraction of TiB2 to the TNZT alloy synthesized by L-PBF is a promising alternative for manufacturing sophisticated components for biomedical applications. Graphical abstract


Author(s):  
Jan Dutkiewicz ◽  
Łukasz Rogal ◽  
Damian Kalita ◽  
Jakub Kawałko ◽  
Marek Stanisław Węglowski ◽  
...  

AbstractThe electron beam additive manufacturing (EBAM) method was applied in order to fabricate rectangular-shaped NiTi component. The process was performed using an electron beam welding system using wire feeder inside the vacuum chamber. NiTi wire containing 50.97 at.% Ni and showing martensitic transformation near room temperature was used. It allowed to obtain a good quality material consisting of columnar grains elongated into the built direction growing directly from the NiTi substrate, which is related to the epitaxial grain growth mechanism. As manufactured material showed martensitic and reverse transformations diffused over the temperature range from −10 to 44 °C, the applied aging at 500° C moved the transformation to higher temperatures and transformation peaks became sharper. The highest recoverable strain of about 3.5% was obtained in the as-deposited sample deformed along the deposition direction. In the case of deformation of the alloy aged at 500 °C for 2h, the formation of martensite occurs at significantly lower stress; however, at about 2.5% the stress begins to increase gradually and only a small shape recovery was observed due to a higher martensitic transformation temperature. In situ SEM tensile deformation in the direction perpendicular to deposition direction showed that the martensite began to appear at the surface of the sample and at the grain boundaries due to heterogeneous nucleation. In situ studies allowed to determine the following crystallographic relationships between B2 and B19’ martensite: (100)B2||(100)B19’ and (100) B2 || (011)B19’; (011)B2|| (001)B19’ and $${(011)}_{\mathrm{B}2}||{\left(11\bar{1 }\right)}_{\mathrm{B}1{9}^{\mathrm{^{\prime}}}}$$ ( 011 ) B 2 | | 11 1 ¯ B 1 9 ′ . Samples aged at 500 °C exhibited fully austenitic microstructure; however, with increasing degree of deformation, the formation of martensite was observed. The majority of needles were tilted about 45° with respect to the tensile direction, and the presence of type I (11 $$\bar{1 }$$ 1 ¯ ) invariant twin boundaries was observed at higher degrees of deformation.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1253
Author(s):  
Li-Wei Tseng ◽  
Chih-Hsuan Chen ◽  
Wei-Cheng Chen ◽  
Yu Cheng ◽  
Nian-Hu Lu

The shape memory properties and microstructure of Fe41Ni28Co17Al11.5(Ti+Nb)2.5 (at.%) cold-rolled alloys were studied at the first time using the values reported in constant stress thermal cycling experiments in a three-point bending test. Thermo-magnetization curves of 97% cold-rolled and solution-treated sample aged at 600 °C for 24, 48 and 72 h showed evidence of the martensitic transformation, and the transformation temperatures increased their values from 24 to 72 h. The alloy cold-rolled to 97% and then solution-treated at 1277 °C for 1 h showed that most grains were aligned near <100> in the rolling direction in the recrystallization texture. The intensity of texture was 13.54, and an average grain size was around 400 μm. The sample aged at 600 °C for 48 h showed fully recoverable strain up to 1.6% at 200 MPa stress level in the three-point bending test. However, the experimental recoverable strain values were lower than the theoretical values, possibly due to the small volume fraction of low angle grain boundary, the formation of brittle grain boundary precipitates, and a grain boundary constraint lower than the expected intensity of texture in the samples.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012042
Author(s):  
A V Shelyakov ◽  
N N Sitnikov ◽  
I A Zaletova ◽  
S A Eroshenkov ◽  
O N Sevryukov

Abstract The efficiency of shape memory alloys for the MEMS technology has been recently demonstrated. Quasibinary intermetallic TiNi-TiCu alloys produced by rapid quenching from liquid phase in the form of thin (about 40 um) ribbons are an attractive material for the fabrication of micro-actuators due to their narrow temperature hysteresis of the shape memory effect (SME) and relatively large recoverable strain. In order to broaden the functionality of SME microdevices, in this work we have alloyed TiNiCu containing 25 at.% copper with aluminum. The results have shown that alloying with 0.6 at.% Al increases the cast characteristics of the composition and favors its amorphization. Upon crystallization by isothermal annealing or electropulse treatment the resultant microstructure and SME properties of the Al containing alloy change but slightly in comparison with the original alloy however there is a significant shift (by more than 15°C) of the SME temperature range toward lower temperatures.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4715
Author(s):  
Piotr Szewczyk ◽  
Maciej Szumigała

This paper presents results of numerical analysis and experimental research on strengthening of steel–concrete composite beams. Studied members consisted of IPE200 I-beam and 90 × 700 mm reinforced concrete slab. The steel part of the section was strengthened by welding additional steel plates at the bottom. The study was performed for plate thickness ranging between 6 to 22 mm. Spatial FEM models were developed to account for material and geometric nonlinearities and for stress and post-welding strain. Proposed numerical models were experimentally validated. One aim was to find an optimum solution which would minimize cost and maximize bending capacity. To achieve this, energy parameters available in numerical simulations were reviewed and analyzed. Recoverable strain energy value determined in Abaqus was used to find the optimum solution.


2021 ◽  
Vol 12 ◽  
pp. 1368-1379
Author(s):  
Vanja Asanović ◽  
Dragan Radonjić ◽  
Jelena Šćepanović ◽  
Darko Vuksanović

Sign in / Sign up

Export Citation Format

Share Document