Surface properties of copper-sulfide minerals with sodium-hydrosulfide activation

2020 ◽  
Vol 156 ◽  
pp. 106530 ◽  
Author(s):  
Hidekazu Matsuoka ◽  
Kohei Mitsuhashi ◽  
Masanobu Kawata ◽  
Tatsuya Kato ◽  
Chiharu Tokoro ◽  
...  
Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1027
Author(s):  
Hidekazu Matsuoka ◽  
Kohei Mitsuhashi ◽  
Masanobu Kawata ◽  
Chiharu Tokoro

The wettability and floatability of oxidized chalcocite, bornite, and chalcopyrite with the conditions of sodium hydrosulfide (NaHS) dosages and pHs were studied by contact angle measurements, and single and mixture mineral flotation tests. To evaluate the results of the flotation, the flotation kinetic model for copper sulfide minerals treated by NaHS was derived. In this study, we focused on the activation and depression by NaHS, a well-known activator and depressant of copper minerals. The flotation results showed that there can be a threshold NaHS dosage to activate the mineral surfaces, as evidenced by the depression of the minerals and reduction of recoveries at higher dosages of NaHS. Chalcocite recoveries increased with an increase of NaHS dosage. Bornite recoveries tended to be depressed with a smaller amount of NaHS as pH increased. The recoveries of chalcopyrite increased as pH increased at an optimum NaHS dosage. Moreover, the flotation kinetic model that includes the surface properties and the reaction rate constant between the copper sulfide minerals and NaHS was derived. The trends of the flotation rate constants and mass fractions with NaHS dosages and pHs could quantitatively well-explain the flotation results.


1994 ◽  
Vol 21 (5) ◽  
Author(s):  
D. Li ◽  
G.M. Bancroft ◽  
M. Kasrai ◽  
M.E. Fleet ◽  
X.H. Feng ◽  
...  

2009 ◽  
Vol 71-73 ◽  
pp. 449-452
Author(s):  
G. Gu ◽  
Li Jun Su ◽  
Guan Zhou Qiu ◽  
Y. Hu

Acidithiobacillus caldus and Leptospirillum ferriphilum cells grown in different energy substances (ferrous ion, sulfur and pyrite) were used. The adhesion of A. caldus and L. ferriphilum cells on pyrite and their effect on pyrite surface properties were studied by adsorption, zeta-potential and FT-IR methods, and the corrosion images of pyrite interaction with bacteria were examined using atomic force microscopy. Research showed that pyrite isoelectric point (IEP) after interaction with bacterial cells shifted towards cells isoelectric point, and the shift degree in case of interaction with A. caldus was observed to be much more pronounced than for interaction with L. ferriphilum, which can be due to higher affinity of A. caldus towards pyrite. The FT-IR spectra of pyrite treated with bacterial cells revealed the presence of the cell functional groups signifying cells adsorption. Although the adsorption density of A. caldus on pyrite was higher than that of L. ferriphilum, L. ferriphilum with strong ability to oxidize ferrous ion showed better leaching efficiency than A. caldus with strong ability to oxidize sulfur for pyrite leaching. The results demonstrated that more important of indirect action (L. ferriphilum) than direct action (A. caldus) on pyrite.Introduction Bacterial adsorption to minerals is an initial step in bacterial leaching for metal recovery [1]. It has been reported that bacterial adhesion is dependent not only on the biochemical properties of the organism but also on the interfacial properties of the various interfaces existing in a bioleaching system[2].The bacteria-mineral interactions result in the changes of their surface properties. The elucidation of their alternate will be beneficial for bioleaching processes. Both Acidithiobacillus caldus and Leptospirillum ferriphilum are known for their ability to inhabit acidic environments and derive energy from oxidation of inorganic substances with natural occurrence in ore deposits and acid mine drainage and high affinity towards sulfide minerals [3-5]. In this work, the alterations of surface properties of pyrite after interaction with L. ferriphilum and A. caldus are studied, and the changes in surface properties caused by bacterial adsorption are discussed with reference to bioleaching behavior of pyrite.


Sign in / Sign up

Export Citation Format

Share Document