Geochemical modelling of diethylenetriamine in tailings management areas

2022 ◽  
Vol 176 ◽  
pp. 107334
Author(s):  
Xinyi Wendy Tian ◽  
Erin Furnell ◽  
Erin R. Bobicki
2019 ◽  
Vol 4 (1) ◽  
pp. 787-794 ◽  
Author(s):  
Aneela Hayder ◽  
Stephen Vanderburgt ◽  
Rafael M. Santos ◽  
Yi Wai Chiang

AbstractLoss of phosphorus from agricultural land through water runoff causes serious detrimental effects on the environment and on water quality. Phosphorous runoff from excessive use of fertilizers can cause algal blooms to grow in nearby water systems, producing toxins that contaminate drinking water sources and recreational water. In this study, a risk analysis of the algal toxin micro-cystin-LR and the mitigation of phosphorus from agriculture runoff is discussed. A risk analysis was performed on the algal bloom toxin microcystin-LR considering the Lake Erie algal bloom event of 2011 as a case study. Toxicity risk analysis results show that relatively low concentrations of microcystin-LR compared to recent case studies pose an acute health risk to both children and adults, and a significant increase in the risk of developing cancer is suggested but subject to further study given the assumptions made. This study investigated the potential of using wollastonite to mitigate phosphorus pollution, considering thermodynamic conditions of a constructed wetland receiving influent water from agriculture runoff, by using geochemical modelling. Geochemical modelling results show that wollastonite can react with phosphorus and capture it in the stable mineral form of hydroxyapatite, offering a possible strategy for risk mitigation of phosphorous runoff. A removal efficiency of 77% of phosphorus using wollastonite is calculated with the help of geochemical modelling.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1582
Author(s):  
Yeling Zhu ◽  
Yuki Gong ◽  
Heather Kaminsky ◽  
Michael Chae ◽  
Paolo Mussone ◽  
...  

Fluid fine tailings are produced in huge quantities by Canada’s mined oil sands industry. Due to the high colloidal stability of the contained fine solids, settling of fluid fine tailings can take hundreds of years, making the entrapped water unavailable and posing challenges to public health and the environment. This study focuses on developing value-added aggregation agents from specified risk materials (SRM), a waste protein stream from slaughterhouse industries, to achieve an improved separation of fluid fine tailings into free water and solids. Settling results using synthetic kaolinite slurries demonstrated that, though not as effective as hydrolyzed polyacrylamide, a commercial flocculant, the use of SRM-derived peptides enabled a 2-3-fold faster initial settling rate than the blank control. The pH of synthetic kaolinite tailings was observed to be slightly reduced with increasing peptides dosage in the test range (10–50 kg/ton). The experiments on diluted fluid fine tailings (as a representation of real oil sands tailings) demonstrated an optimum peptides dosage of 14 kg/ton, which resulted in a 4-fold faster initial settling rate compared to the untreated tailings. Overall, this study demonstrates the novelty and feasibility of using SRM-peptides to address intractable oil sands fluid tailings.


Water SA ◽  
2015 ◽  
Vol 41 (5) ◽  
pp. 677 ◽  
Author(s):  
Vhahangwele Masindi ◽  
Mugera Wilson Gitari ◽  
Hlanganani Tutu ◽  
Marinda De Beer

Sign in / Sign up

Export Citation Format

Share Document