Presence of multiple acyltranferases with diverse substrate specificity in Bacillus smithii strain IITR6b2 and characterization of unique acyltransferase with nicotinamide

2014 ◽  
Vol 107 ◽  
pp. 64-72 ◽  
Author(s):  
Shilpi Agarwal ◽  
Bijan Choudhury
1987 ◽  
Vol 262 (8) ◽  
pp. 3754-3761
Author(s):  
A.J. Ganzhorn ◽  
D.W. Green ◽  
A.D. Hershey ◽  
R.M. Gould ◽  
B.V. Plapp

Author(s):  
Ryushi Kawakami ◽  
Chinatsu Kinoshita ◽  
Tomoki Kawase ◽  
Mikio Sato ◽  
Junji Hayashi ◽  
...  

Abstract The amino acid sequence of the OCC_10945 gene product from the hyperthermophilic archaeon Thermococcus litoralis DSM5473, originally annotated as γ-aminobutyrate aminotransferase, is highly similar to that of the uncharacterized pyridoxal 5ʹ-phosphate (PLP)-dependent amino acid racemase from Pyrococcus horikoshii. The OCC_10945 enzyme was successfully overexpressed in Escherichia coli by co-expression with a chaperone protein. The purified enzyme demonstrated PLP-dependent amino acid racemase activity primarily toward Met and Leu. Although PLP contributed to enzyme stability, it only loosely bound to this enzyme. Enzyme activity was strongly inhibited by several metal ions, including Co2+ and Zn2+, and non-substrate amino acids such as l-Arg and l-Lys. These results suggest that the underlying PLP-binding and substrate recognition mechanisms in this enzyme are significantly different from those of the other archaeal and bacterial amino acid racemases. This is the first description of a novel PLP-dependent amino acid racemase with moderate substrate specificity in hyperthermophilic archaea.


1988 ◽  
Vol 263 (26) ◽  
pp. 13215-13222 ◽  
Author(s):  
M Poe ◽  
C D Bennett ◽  
W E Biddison ◽  
J T Blake ◽  
G P Norton ◽  
...  

2005 ◽  
Vol 187 (3) ◽  
pp. 1192-1195 ◽  
Author(s):  
Hiromi Sato ◽  
Jimmy B. Feix ◽  
Cecilia J. Hillard ◽  
Dara W. Frank

ABSTRACT Recombinant ExoU (rExoU) and yeast extract were used to optimize an in vitro phospholipase assay as a basis for identifying the mechanism for enzyme activation and substrate specificity. Our results support a model in which a eukaryotic protein cofactor or complex facilitates the interaction of rExoU with phospholipid substrates.


Sign in / Sign up

Export Citation Format

Share Document