repair factor
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 28)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ivan Corbeski ◽  
Xiaohu Guo ◽  
Bruna V. Eckhardt ◽  
Domenico Fasci ◽  
Melissa Graewert ◽  
...  

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B(1-5). Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step, and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.


2021 ◽  
Author(s):  
Shuang Feng ◽  
James L. Manley

The nucleolus is an important cellular compartment in which ribosomal RNAs (rRNAs) are transcribed and where certain stress pathways that are crucial for cell growth are coordinated. Here we report novel functions of the DNA replication and repair factor replication protein A (RPA) in control of nucleolar homeostasis. We show that loss of the DNA:RNA helicase senataxin (SETX) promotes RPA nucleolar localization, and that this relocalization is dependent on the presence of R loops. Notably, this nucleolar RPA phenotype was also observed in the presence of camptothecin (CPT)-induced genotoxic stress, as well as in SETX-deficient AOA2 patient fibroblasts. Extending these results, we found that RPA is recruited to rDNA following CPT treatment, where RPA prevents R-loop-induced DNA double-strand breaks. Furthermore, we show that loss of RPA significantly decreased 47S pre-rRNA levels, which was accompanied by increased expression of both RNAP II-mediated “promoter and pre-rRNA antisense” RNA as well as RNAP I-transcribed intragenic spacer RNAs. Finally, and likely reflecting the above, we found that loss of RPA promoted nucleolar structural disorganization, characterized by the appearance of reduced size nucleoli. Our findings both indicate new roles for RPA in nucleoli through pre-rRNA transcriptional control and also emphasize that RPA function in nucleolar homeostasis is linked to R-loop resolution under both physiological and pathological conditions.


2021 ◽  
Author(s):  
Qi-En Wang ◽  
Qianzheng Zhu ◽  
Gulzar Wani ◽  
Mohamed A El-Mahdy ◽  
Jinyou Li ◽  
...  

iScience ◽  
2021 ◽  
pp. 103436
Author(s):  
Akihito Hishikawa ◽  
Kaori Hayashi ◽  
Akiko Kubo ◽  
Kazutoshi Miyashita ◽  
Akinori Hashiguchi ◽  
...  

2021 ◽  
Author(s):  
Aldo S Bader ◽  
Janna Luessing ◽  
Ben R Hawley ◽  
George L Skalka ◽  
Wei-Ting Lu ◽  
...  

Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that are naturally deficient for DNA:RNA-hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.


GeroScience ◽  
2021 ◽  
Author(s):  
Michelle L. Swift ◽  
Christian Sell ◽  
Jane Azizkhan-Clifford

AbstractPersistent DNA damage (genotoxic stress) triggers signaling cascades that drive cells into apoptosis or senescence to avoid replicating a damaged genome. Sp1 has been found to play a role in double strand break (DSB) repair, and a link between Sp1 and aging has also been established, where Sp1 protein, but not RNA, levels decrease with age. Interestingly, inhibition ATM reverses the age-related degradation of Sp1, suggesting that DNA damage signaling is involved in senescence-related degradation of Sp1. Proteasomal degradation of Sp1 in senescent cells is mediated via sumoylation, where sumoylation of Sp1 on lysine 16 is increased in senescent cells. Taking into consideration our previous findings that Sp1 is phosphorylated by ATM in response to DNA damage and that proteasomal degradation of Sp1 at DSBs is also mediated by its sumoylation and subsequent interaction with RNF4, we investigated the potential contribution of Sp1’s role as a DSB repair factor in mediating cellular senescence. We report here that Sp1 expression is decreased with a concomitant increase in senescence markers in response to DNA damage. Mutation of Sp1 at serine 101 to create an ATM phospho-null mutant, or mutation of lysine 16 to create a sumo-null mutant, prevents the sumoylation and subsequent proteasomal degradation of Sp1 and results in a decrease in senescence. Conversely, depletion of Sp1 or mutation of Sp1 to create an ATM phosphomimetic results in premature degradation of Sp1 and an increase in senescence markers. These data link a loss of genomic stability with senescence through the action of a DNA damage repair factor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yilun Sun ◽  
Jiji Chen ◽  
Shar-yin N. Huang ◽  
Yijun P. Su ◽  
Wenjie Wang ◽  
...  

AbstractPoly(ADP)-ribosylation (PARylation) regulates chromatin structure and recruits DNA repair proteins. Using single-molecule fluorescence microscopy to track topoisomerase I (TOP1) in live cells, we found that sustained PARylation blocked the repair of TOP1 DNA-protein crosslinks (TOP1-DPCs) in a similar fashion as inhibition of the ubiquitin-proteasome system (UPS). PARylation of TOP1-DPC was readily revealed by inhibiting poly(ADP-ribose) glycohydrolase (PARG), indicating the otherwise transient and reversible PARylation of the DPCs. As the UPS is a key repair mechanism for TOP1-DPCs, we investigated the impact of TOP1-DPC PARylation on the proteasome and found that the proteasome is unable to associate with and digest PARylated TOP1-DPCs. In addition, PARylation recruits the deubiquitylating enzyme USP7 to reverse the ubiquitylation of PARylated TOP1-DPCs. Our work identifies PARG as repair factor for TOP1-DPCs by enabling the proteasomal digestion of TOP1-DPCs. It also suggests the potential regulatory role of PARylation for the repair of a broad range of DPCs.


Author(s):  
Yana van der Weegen ◽  
Klaas de Lint ◽  
Diana van den Heuvel ◽  
Yuka Nakazawa ◽  
Tycho E. T. Mevissen ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qian Wang ◽  
Zhonghua Cheng ◽  
Qintao Gan ◽  
Yongsheng Bai ◽  
Jianqing Zhang

Aiming to reduce the warranty cost, we put forward a new warranty strategy of two-dimensional (2D) warranty products. In this strategy, the incomplete preventive maintenance and minimal repair are proposed where the preventive maintenance is further divided by the degree of maintenance, and all other failures are repaired minimally. Preventive maintenance of different degree is put forward by the manufacturer and the user, respectively, and the repair factor is used to distinguish the different degree of maintenance. We establish model of warranty cost based on reliability theory and propose a method to solve the model. Finally, the validity of this model is proved by a numerical example, and the sensitivity analysis is carried out.


Sign in / Sign up

Export Citation Format

Share Document