scholarly journals HCV IRES Captures an Actively Translating 80S Ribosome

2019 ◽  
Vol 74 (6) ◽  
pp. 1205-1214.e8 ◽  
Author(s):  
Takeshi Yokoyama ◽  
Kodai Machida ◽  
Wakana Iwasaki ◽  
Tomoaki Shigeta ◽  
Madoka Nishimoto ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Chikako Ono ◽  
Takasuke Fukuhara ◽  
Songling Li ◽  
Jian Wang ◽  
Asuka Sato ◽  
...  

AbstractOne of the determinants for tissue tropism of hepatitis C virus (HCV) is miR-122, a liver-specific microRNA. Recently, it has been reported that interaction of miR-122 to HCV RNA induces a conformational change of the 5’UTR internal ribosome entry site (IRES) structure to form stem-loop II structure (SLII) and hijack of translating 80S ribosome through the binding of SLIII to 40S subunit, which leads to efficient translation. On the other hand, low levels of HCV-RNA replication have also been detected in some non-hepatic cells; however, the details of extrahepatic replication remain unknown. These observations suggest the possibility that miRNAs other than miR-122 can support efficient replication of HCV-RNA in non-hepatic cells. Here, we identified a number of such miRNAs and show that they could be divided into two groups: those that bind HCV-RNA at two locations (miR-122 binding sites I and II), in a manner similar to miR-122 (miR-122-like), and those that target a single site that bridges sites I and II and masking both G28 and C29 in the 5’UTR (non-miR-122-like). Although the enhancing activity of these non-hepatic miRNAs were lower than those of miR-122, substantial expression was detected in various normal tissues. Furthermore, structural modeling indicated that both miR-122-like and non-miR-122-like miRNAs not only can facilitate the formation of an HCV IRES SLII but also can stabilize IRES 3D structure in order to facilitate binding of SLIII to the ribosome. Together, these results suggest that HCV facilitates miR-122-independent replication in non-hepatic cells through recruitment of miRNAs other than miR-122. And our findings can provide a more detailed mechanism of miR-122-dependent enhancement of HCV-RNA translation by focusing on IRES tertiary structure.Author summaryOne of the determinants for tissue tropism of hepatitis C virus (HCV) is miR-122, a liver-specific microRNA, which is required for efficient propagation. Recently, it has been reported that interaction of miR-122 with the 5’UTR of HCV contributes to the folding of a functional IRES structure that is required for efficient translation of viral RNA. In this study, we examined the minimum motifs in the seed region of miRNAs required for the enhancement of HCV replication. As a result, we found two groups of non-hepatic miRNAs: “miR-122-like miRNAs” that can bind HCV-RNA at two locations in a manner similar to miR-122, and “non-miR-122-like miRNAs” that target a single site that masking both G28 and C29 in the 5’UTR. The interaction of these non-hepatic miRNAs with the 5’UTR can facilitate not only the folding of active HCV IRES but also the stabilization of IRES 3D structure in order to facilitate binding to the ribosome. These results suggest the possibility of replication of HCV in non-hepatic cells through interaction with miRNAs other than miR-122 and provide insight into the establishment of persistent infection of HCV in non-hepatic tissues that lead to the development of extrahepatic manifestations.


Structure ◽  
2005 ◽  
Vol 13 (11) ◽  
pp. 1695-1706 ◽  
Author(s):  
Daniel Boehringer ◽  
Rolf Thermann ◽  
Antje Ostareck-Lederer ◽  
Joe D. Lewis ◽  
Holger Stark

2021 ◽  
Vol 22 (13) ◽  
pp. 6973
Author(s):  
Alberto Mills ◽  
Federico Gago

eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.


2003 ◽  
Vol 3 (1) ◽  
pp. 291-292 ◽  
Author(s):  
K. Kikuchi ◽  
T. Umehara ◽  
K. Fukuda ◽  
J. Hwang ◽  
A. Kuno ◽  
...  

2004 ◽  
Vol 78 (21) ◽  
pp. 12075-12081 ◽  
Author(s):  
Dongsheng Li ◽  
William B. Lott ◽  
John Martyn ◽  
Gholamreza Haqshenas ◽  
Eric J. Gowans

ABSTRACT To investigate the role of the hepatitis C virus internal ribosome entry site (HCV IRES) domain IV in translation initiation and regulation, two chimeric IRES elements were constructed to contain the reciprocal domain IV in the otherwise HCV and classical swine fever virus IRES elements. This permitted an examination of the role of domain IV in the control of HCV translation. A specific inhibitor of the HCV IRES, vitamin B12, was shown to inhibit translation directed by all IRES elements which contained domain IV from the HCV and the GB virus B IRES elements, whereas the HCV core protein could only suppress translation from the wild-type HCV IRES. Thus, the mechanisms of translation inhibition by vitamin B12 and the core protein differ, and they target different regions of the IRES.


2007 ◽  
Vol 82 (6) ◽  
pp. 2620-2630 ◽  
Author(s):  
Mulu Z. Tesfay ◽  
Jun Yin ◽  
Christina L. Gardner ◽  
Mikhail V. Khoretonenko ◽  
Nadejda L. Korneeva ◽  
...  

ABSTRACT The alpha/beta interferon (IFN-α/β) response is critical for host protection against disseminated replication of many viruses, primarily due to the transcriptional upregulation of genes encoding antiviral proteins. Previously, we determined that infection of mice with Sindbis virus (SB) could be converted from asymptomatic to rapidly fatal by elimination of this response (K. D. Ryman et al., J. Virol. 74:3366-3378, 2000). Probing of the specific antiviral proteins important for IFN-mediated control of virus replication indicated that the double-stranded RNA-dependent protein kinase, PKR, exerted some early antiviral effects prior to IFN-α/β signaling; however, the ability of IFN-α/β to inhibit SB and protect mice from clinical disease was essentially undiminished in the absence of PKR, RNase L, and Mx proteins (K. D. Ryman et al., Viral Immunol. 15:53-76, 2002). One characteristic of the PKR/RNase L/Mx-independent antiviral effect was a blockage of viral protein accumulation early after infection (K. D. Ryman et al., J. Virol. 79:1487-1499, 2005). We show here that IFN-α/β priming induces a PKR-independent activity that inhibits m7G cap-dependent translation at a step after association of cap-binding factors and the small ribosome subunit but before formation of the 80S ribosome. Furthermore, the activity targets mRNAs that enter across the cytoplasmic membrane, but nucleus-transcribed RNAs are relatively unaffected. Therefore, this IFN-α/β-induced antiviral activity represents a mechanism through which IFN-α/β-exposed cells are defended against viruses that enter the cytoplasm, while preserving essential host activities, including the expression of antiviral and stress-responsive genes.


Sign in / Sign up

Export Citation Format

Share Document