host protection
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 74)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Rhia Kundu ◽  
Janakan Sam Narean ◽  
Lulu Wang ◽  
Joseph Fenn ◽  
Timesh Pillay ◽  
...  

AbstractCross-reactive immune responses to SARS-CoV-2 have been observed in pre-pandemic cohorts and proposed to contribute to host protection. Here we assess 52 COVID-19 household contacts to capture immune responses at the earliest timepoints after SARS-CoV-2 exposure. Using a dual cytokine FLISpot assay on peripheral blood mononuclear cells, we enumerate the frequency of T cells specific for spike, nucleocapsid, membrane, envelope and ORF1 SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses. We observe higher frequencies of cross-reactive (p = 0.0139), and nucleocapsid-specific (p = 0.0355) IL-2-secreting memory T cells in contacts who remained PCR-negative despite exposure (n = 26), when compared with those who convert to PCR-positive (n = 26); no significant difference in the frequency of responses to spike is observed, hinting at a limited protective function of spike-cross-reactive T cells. Our results are thus consistent with pre-existing non-spike cross-reactive memory T cells protecting SARS-CoV-2-naïve contacts from infection, thereby supporting the inclusion of non-spike antigens in second-generation vaccines.


2022 ◽  
Vol 12 ◽  
Author(s):  
Joey H. Li ◽  
Timothy E. O’Sullivan

NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.


2021 ◽  
Author(s):  
Nevien Ismail ◽  
Subir Karmakar ◽  
Parna Bhattacharya ◽  
Telly Sepahpour ◽  
Kazuoy Takeda ◽  
...  

Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene deleted parasite strain (LmCen-/-) that induced protection against a homologous and heterologous challenges. The protection is mediated by IFN-gamma; secreting CD4+ T effector cells and multifunctional T cells, which is analogous to leishmanization. Previously, skin tissue resident memory T cells (TRM cells) were shown to be crucial for host protection in a leishmanization model. In this study, we evaluated generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. In the absence of recoverable LmCen-/- parasites, the skin of immunized mice showed functional TRM cells comparable to leishmanized mice. The generation of the skin TRM cells was supported by the induction of cytokines and chemokines essential for their production and survival. Following challenge infection with wild type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice which was similar to leishmanization. Further, upon challenge, CD4+ TRM cells induced higher levels of IFN-gamma; and Granzyme B in the immunized and leishmanized mice than non-immunized mice. Taken together, our studies demonstrate that a genetically modified live attenuated Leishmania vaccine generates functional CD4+ TRM cells that mediate protection and can be a safer alternative to leishmanization.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Merle Lisa Hammer ◽  
Maria Joanna Niemiec ◽  
Isabel Auge ◽  
Pim van Leeuwen ◽  
Friederike Gorki ◽  
...  

The human body is colonized by various microbes, among them the yeast Candida albicans. Mostly harmless, this opportunist causes also disease, ranging from superficial infections to sepsis. Risk factors are disturbed host defenses, mucosal barrier breakdown, and antibiotic-induced dysbiosis. Hence, residing bacteria are important to protect from Candida-mediated damage or inflammation. Bacteroides vulgatus mpk, e.g., is described as positively immunomodulatory in mouse models of inflammatory bowel disease, but its effect on the mycobiota is unknown. In this study we aimed to determine if B. vulgatus mpk affects C. albicans pathogenicity. Therefore, intestinal and oral epithelial cellswere pre-infectedin vitrowith B. vulgatus mpk and then challenged with C. albicans SC5314. The role of soluble factors was investigated by spatial separation or use of Bacteroides-conditioned medium (BCM). Preincubation of host cells with B. vulgatus mpk strongly reduced C. albicans-mediated damage while fungal burden and hyphal length were unaffected by the bacterium. The protective effect did not depend on direct contact of Bacteroidesto host cellsor Candida and could be mimicked using BCM. Contact independency suggests that diffusible factors modulate host cell susceptibility. Ongoing experiments aim to identifykey soluble Bacteroides mediators as well as subsequent host cell signaling. Additionally, co-colonization experiments of germ-free mice are planned to investigate B. vulgatus mpk’s potential to mediate colonization resistance towards C. albicans. This will contribute to our understanding of how commensal bacteria affect C. albicans and host protection.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3548
Author(s):  
Paolo Capozza ◽  
Annamaria Pratelli ◽  
Michele Camero ◽  
Gianvito Lanave ◽  
Grazia Greco ◽  
...  

Over time, feline viruses have acquired elaborateopportunistic properties, making their infections particularly difficult to prevent and treat. Feline coronavirus (FCoV) and feline herpesvirus-1 (FeHV-1), due to the involvement of host genetic factors and immune mechanisms in the development of the disease and more severe forms, are important examples of immune evasion of the host’s innate immune response by feline viruses.It is widely accepted that the innate immune system, which providesan initial universal form of the mammalian host protection from infectious diseases without pre-exposure, plays an essential role in determining the outcome of viral infection.The main components of this immune systembranchare represented by the internal sensors of the host cells that are able to perceive the presence of viral component, including nucleic acids, to start and trigger the production of first type interferon and to activate the cytotoxicity by Natural Killercells, often exploited by viruses for immune evasion.In this brief review, we providea general overview of the principal tools of innate immunity, focusing on the immunologic escape implemented byFCoVand FeHV-1 duringinfection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bert Malengier-Devlies ◽  
Mieke Metzemaekers ◽  
Carine Wouters ◽  
Paul Proost ◽  
Patrick Matthys

Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.


2021 ◽  
Vol 11 (12) ◽  
pp. 1253
Author(s):  
Reginald M. Gorczynski ◽  
Robyn A. Lindley ◽  
Edward J. Steele ◽  
Nalin Chandra Wickramasinghe

The primary global response to the SARS-CoV-2 pandemic has been to bring to the clinic as rapidly as possible a number of vaccines that are predicted to enhance immunity to this viral infection. While the rapidity with which these vaccines have been developed and tested (at least for short-term efficacy and safety) is commendable, it should be acknowledged that this has occurred despite the lack of research into, and understanding of, the immune elements important for natural host protection against the virus, making this endeavor a somewhat unique one in medical history. In contrast, as pointed out in the review below, there were already important past observations that suggested that respiratory infections at mucosal surfaces were susceptible to immune clearance by mechanisms not typical of infections caused by systemic (blood-borne) pathogens. Accordingly, it was likely to be important to understand the role for both innate and acquired immunity in response to viral infection, as well as the optimum acquired immune resistance mechanisms for viral clearance (B cell or antibody-mediated, versus T cell mediated). This information was needed both to guide vaccine development and to monitor its success. We have known that many pathogens enter into a quasi-symbiotic relationship with the host, with each undergoing sequential change in response to alterations the other makes to its presence. The subsequent evolution of viral variants which has caused such widespread concern over the last 3–6 months as host immunity develops was an entirely predictable response. What is still not known is whether there will be other unexpected side-effects of the deployment of novel vaccines in humans which have yet to be characterized, and, if so, how and if these can be avoided. We conclude by remarking that to ignore a substantial body of well-attested immunological research in favour of expediency is a poor way to proceed.


2021 ◽  
Author(s):  
Julie Zaworski ◽  
Oyut Dagva ◽  
Julius Brandt ◽  
Chloé Baum ◽  
Laurence Ettwiller ◽  
...  

Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX systems, RM-like activities that employ host protection by DNA modification but replication arrest without evident nuclease action on unmodified phage DNA. We show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a BREX homolog. The stySA29 allele of the hybrid strain LB5000 carries a mutated version of the ancestral LT2 BREX system. Surprisingly, both a restriction and a methylation defect are observed for this lineage despite lack of mutations in brxX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (µ) in C-terminal domains. To avoid plasmid artifacts and potential stoichiometric interference, we chose to investigate this system in situ, replacing the mutated pglZµ and brxCµ genes with wild type (WT). PglZ-WT supports methylation in the presence of either BrxCµ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction of phage L requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. Disruption of four other CDS with cat cassettes still permitted modification, suggesting that BrxC, PglZ and BrxX are principal components of the modification activity. BrxL is required for restriction only. A partial disruption of brxL disrupts transcription globally.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2742
Author(s):  
Alessio Grimaldi ◽  
Giuseppe Pietropaolo ◽  
Helena Stabile ◽  
Andrea Kosta ◽  
Cristina Capuano ◽  
...  

Innate lymphoid cells (ILCs) are innate lymphocytes playing essential functions in protection against microbial infections and participate in both homeostatic and pathological contexts, including tissue remodeling, cancer, and inflammatory disorders. A number of lineage-defining transcription factors concur to establish transcriptional networks which determine the identity and the activity of the distinct ILC subsets. However, the contribution of other regulatory molecules in controlling ILC development and function is also recently emerging. In this regard, noncoding RNA (ncRNAs) represent key elements of the complex regulatory network of ILC biology and host protection. ncRNAs mostly lack protein-coding potential, but they are endowed with a relevant regulatory activity in immune and nonimmune cells because of their ability to control chromatin structure, RNA stability, and/or protein synthesis. Herein, we summarize recent studies describing how distinct types of ncRNAs, mainly microRNAs, long ncRNAs, and circular RNAs, act in the context of ILC biology. In particular, we comment on how ncRNAs can exert key effects in ILCs by controlling gene expression in a cell- or state-specific manner and how this tunes distinct functional outputs in ILCs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alessandra Araujo ◽  
Alexandra Safronova ◽  
Elise Burger ◽  
Américo López-Yglesias ◽  
Shilpi Giri ◽  
...  

Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an mTORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease (IBD) and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.


Sign in / Sign up

Export Citation Format

Share Document