Simultaneous removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2

2019 ◽  
Vol 296 ◽  
pp. 111987 ◽  
Author(s):  
Chang Liu ◽  
Shilin Zeng ◽  
Bingqiao Yang ◽  
Feifei Jia ◽  
Shaoxian Song
2016 ◽  
Vol 35 ◽  
pp. 287-294 ◽  
Author(s):  
Fumihiko Ogata ◽  
Ayaka Ueda ◽  
Shigeharu Tanei ◽  
Daisuke Imai ◽  
Naohito Kawasaki

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 343 ◽  
Author(s):  
Bożena Kozera-Sucharda ◽  
Barbara Gworek ◽  
Igor Kondzielski

Natural and synthetic aluminosilicate minerals, in particular zeolites, are considered to be very useful in remediation processes, such as purification of waters polluted with heavy metals. That is due to their unique and outstanding physico-chemical properties, rendering them highly efficient, low-cost, and environmentally friendly sorbents of various environmental pollutants. The aim of this study was to examine the sorption capacity of four selected zeolites: A natural zeolite and three synthetic zeolites (3A, 10A, and 13X), towards zinc and cadmium present in multicomponent aqueous solutions, in relation to identified sorption mechanisms. It was stated that synthetic zeolites 3A and 10A were the most efficient in simultaneous removal of zinc and cadmium from aqueous solutions. Additionally, zeolite 10A was demonstrated to be the mineral best coping with prolonged pollution of water with those elements. The mechanism of sorption identified for tested minerals was physisorption.


2017 ◽  
Vol 68 (1) ◽  
pp. 1-5
Author(s):  
Rodica Elena Patescu ◽  
Claudia Maria Simonescu ◽  
Cristian Onose ◽  
Teodor Laurentiu Busuioc ◽  
Daiana Elena Pasarica ◽  
...  

This research study deals with lead and nickel simultaneous removal from aqueous solutions by the use of chitosan coated cobalt ferrite as adsorbent. Batch removal tests were performed in order to establish the main parameters that influence the sorption capacity, removal efficiency and the selectivity of this adsorbent. The values of sorption capacity for lead and nickel experimentally determined are: 56.23 mg/g and respectively 45.11 mg/g. Langmuir and Freundlich adsorption isotherms were used to interpret the sorption experimental data. The kinetic data were explored by pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The experimental data were well fitted with the pseudo-second order model for both heavy metals. The main conclusion that can be drawn from this research is that this material can be successfully used for the removal of lead and nickel from binary aqueous solutions and wastewater.


2018 ◽  
Vol 54 (2A) ◽  
pp. 259
Author(s):  
Tran Thi Huyen Nga

In this study, Phragmites australis (common reed) was transplanted into solutions added with different concentrations of Mn, Zn, Cd, Pb, and As for 30 days in the laboratory (10 days of incubation and repeated three times without changing the plant) to assess the removal of these metals and its accumulation in the plant. The results showed that high removal efficiency was achieved by growing P.australis. The highest daily removal rates of heavy metals and As were obtained after 1 day of new solution addition. The highest concentrations of Mn, Zn, Cd, Pb, and As in the plant roots were 3920, 1020, 90.9, 1350, and 183 mg kg–1 dry wt., respectively; those in the stems were 465, 108, 26.4, 227, and 74.0 mg kg–1 dry wt.; and those in the leaves were 716, 150, 18.1, 157, and 88.3 mg kg–1 dry wt. The results of this study indicated that P. australis has the ability to remove simultaneously these metals from water, making it a potential species for phytoremediation of wastewater from Pb-Zn mine.


2021 ◽  
Vol 255 ◽  
pp. 117684 ◽  
Author(s):  
Priyabrata Pal ◽  
Aiza Gay Corpuz ◽  
Shadi W. Hasan ◽  
Mika Sillanpää ◽  
Fawzi Banat

Sign in / Sign up

Export Citation Format

Share Document