scholarly journals SIMULTANEOUS REMOVAL OF SOME HEAVY METALS AND ARSENIC FROM AQUEOUS SOLUTIONS BY Phragmites australis

2018 ◽  
Vol 54 (2A) ◽  
pp. 259
Author(s):  
Tran Thi Huyen Nga

In this study, Phragmites australis (common reed) was transplanted into solutions added with different concentrations of Mn, Zn, Cd, Pb, and As for 30 days in the laboratory (10 days of incubation and repeated three times without changing the plant) to assess the removal of these metals and its accumulation in the plant. The results showed that high removal efficiency was achieved by growing P.australis. The highest daily removal rates of heavy metals and As were obtained after 1 day of new solution addition. The highest concentrations of Mn, Zn, Cd, Pb, and As in the plant roots were 3920, 1020, 90.9, 1350, and 183 mg kg–1 dry wt., respectively; those in the stems were 465, 108, 26.4, 227, and 74.0 mg kg–1 dry wt.; and those in the leaves were 716, 150, 18.1, 157, and 88.3 mg kg–1 dry wt. The results of this study indicated that P. australis has the ability to remove simultaneously these metals from water, making it a potential species for phytoremediation of wastewater from Pb-Zn mine.

2019 ◽  
Vol 41 (2) ◽  
pp. 130-137
Author(s):  
Nguyen Thi Hoang Ha ◽  
Vu Thi Thom

Equisetum diffusum D. Don was transplanted into solutions added with different concentrations of Mn, Zn, Cd, Pb, and As for 30 days in the laboratory experiment to assess the removal of these metals and their accumulation in the plant. The highest removal efficiency of Mn, Zn, Cd, Pb, and As from solutions by E. diffusum was 99.6, 97.9, 77.5, 85.3, and 61.9%, respectively. The highest daily removal efficiencies of heavy metals were obtained after 1 day of new solution addition. The highest concentrations of Mn, Zn, Cd, Pb, and As in the plant roots were 7230, 1490, 174, 1170, and 274 mg/kg-DW, respectively; those in the shoots were 1960, 566, 33.9, 308, and 108 mg/kg-DW. The bioconcentration factor (BCF) values for Mn, Zn, Cd, Pb, and As were 496, 406, 702, 463, and 191, respectively. The results of this study indicate that E. diffusum has the ability to remove simultaneously these metals from water, making it a potential species for phytoremediation of water contaminated with multiple heavy metals.  


2018 ◽  
Vol 932 ◽  
pp. 124-128
Author(s):  
Wei Feng Liu ◽  
Xue Wei Li ◽  
Wen Bo Dong ◽  
Le Bo ◽  
Yi Min Zhu ◽  
...  

Poly-γ-glutamic acid (γ-PGA) produced by Bacillus pumilus C2 was employed to remove heavy metals from sewage of magnesium - based exhaust gas cleaning system (Mg-EGCS). The components of heavy metals in the sewage were detailed analyzed. On the base of the analytical results, the effects of addition amount of γ-PGA, adsorption time, temperature and NaCl concentration on the removal efficiency of typical heavy metals were further investigated. The optimal removal rates of heavy metals were obtained at the γ-PGA dosage of 9 g/L and adsorption duration of 30 min. The γ-PGA had excellent tolerance for high temperatures up to 80°C and exhibited steady heavy metal removal efficiency in NaCl concentrations of 0 – 24%. Under the optimal conditions, the removal rates of Zn, Cr, V, Cd, Pb and Ni by γ-PGA in a real sewage of Mg-EGCS achieved 53.6%, 100%, 49.2%, 72.7%, 33.7% and 39.9% respectively.


2015 ◽  
pp. 75-81 ◽  
Author(s):  
Amin Mojiri ◽  
Hamidi Abdul Aziz ◽  
Ramlah Bt Mohd Tajuddin ◽  
Shahin Gavanji ◽  
Ali Gholami

2014 ◽  
Vol 71 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Isha Shamshad ◽  
Sardar Khan ◽  
Muhammad Waqas ◽  
Nadeem Ahmad ◽  
Khushnood -Ur-Rehman ◽  
...  

Four freshwater algae, including Cladophora glomerata, Oedogonium westii, Vaucheria debaryana and Zygnema insigne, were tested for their bioaccumulation capacity for cadmium (Cd), chromium (Cr) and lead (Pb) in a controlled environment with an average temperature of 18 °C, and light/dark duration of 12:12 h. Experiments were performed in aqueous solutions containing selected heavy metals (HM) (ranging from 0.05 to 1.5 mg L−1) with 0.5 g of living algae at 18 °C and pH 6.8. The results indicated that C. glomerata was observed to be the most competent species for the removal of Cr, Cd and Pb from aqueous solutions. HM removal trends were in the order of Cd>Cr>Pb while the removal efficiency of selected algae species was in the order of C. glomerata, O. westii, V. debaryana and Z. insigne. The bioaccumulation capacity of C. glomerata, V. debaryana and Z. insigne was observed for different HM. Removal of HM was higher with low levels of HM in aqueous solutions. The results indicated that C. glomerata, O. westii, V. debaryana and Z. insigne had significant (P ≤0.01) diverse bioaccumulation capacity for Cr, Cd and Pb.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 940 ◽  
Author(s):  
Ha T.H. Nguyen ◽  
Masayuki Sakakibara ◽  
Minh N. Nguyen ◽  
Nhuan T. Mai ◽  
Vinh T. Nguyen

Silicon (Si) has been recently reconsidered as a beneficial element due to its direct roles in stimulating the growth of many plant species and alleviating metal toxicity. This study aimed at validating the potential of an aquatic macrophyte Eleocharis acicularis for simultaneous removal of heavy metals from aqueous solutions under different dissolved Si. The laboratory experiments designed for determining the removal efficiencies of heavy metals were conducted in the absence or presence of Si on a time scale up to 21 days. Eleocharis acicularis was transplanted into the solutions containing 0.5 mg L−1 of indium (In), gallium (Ga), silver (Ag), thallium (Tl), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) with various Si concentrations from 0 to 4.0 mg L−1. The results revealed that the increase of dissolved Si concentrations enhanced removal efficiencies of E. acicularis for Ga, Cu, Zn, Cd, and Pb, while this increase did not show a clear effect for In, Tl, and Ag. Our study presented a notable example of combining E. acicularis with dissolved Si for more efficient removals of Cu, Zn, Cd, Pb, and Ga from aqueous solutions. The findings are applicable to develop phytoremediation or phytomining strategy for contaminated environment.


2019 ◽  
Vol 43 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Milijana Prica ◽  
Gordana Andrejic ◽  
Jasmina Sinzar-Sekulic ◽  
Tamara Rakic ◽  
Zeljko Dzeletovic

Heavy metal contamination of aquatic ecosystems directly threatens the health, production and biodiversity of aquatic and surrounding terrestrial ecosystems, and it represents a serious global problem. Metal extraction during ore processing produces large amounts of wastes that remain in tailings at the mining site. Fine waste particles represent a long-term source of potentially toxic metals that can be released into the ground and surface water as a result of their progressive chemical weathering. Aquatic macrophythes have a major role in absorption and accumulation of heavy metals and thereby in natural water purification. The presence of naturally growing plants on mine tailing ponds indicates their tolerance of heavy metal pollution and suggests a possible role for them in phytoremediation. In the present study, we analysed the concentrations of heavy metals (Fe, Mn, Ni, Zn, Pb, Cd, Co, Cu) in Phragmites australis plants growing spontaneously in shallow water of several mine tailing ponds. The aims of the study were to define chemical properties of the mine spoils, determine the concentrations of heavy metals in different plant organs and assess the phytoremediation potential of common reed. The investigated sediments were notably rich in both total and available forms of Fe, Pb, Zn and Cu, with their upper concentrations close to phytotoxic levels. The greatest amounts of almost all of the investigated metals in plants from all three mine tailing ponds were found in the roots, with their concentrations positively correlated with the amounts of their available forms in the corresponding sediment. The far higher metal concentrations in the roots in comparison with other plant organs clearly indicate that the metals were strongly sequestrated within root cortical tissues and were not transferred across the endodermis. Taken altogether, the presence of the greatest amounts of metals in roots, high bioaccumulation factor and low translocation factor show that P. australis is an excluder plant species with a good phytostabilisation potential. As such, it might be efficiently used in rhizofiltration of wastewaters.


2013 ◽  
Vol 78 (8) ◽  
pp. 1241-1258 ◽  
Author(s):  
Vlatko Kastratovic ◽  
Sladjana Krivokapic ◽  
Dijana Djurovic ◽  
Nada Blagojevic

Due to its ability to accumulate metals, availability throughout the year and its large biomass, Phragmites australis (common reed) is suitable for biomonitoring studies for the evaluation of load level of water ecosystem with trace metals. The heavy metals concentration in P.australis tissue can be several ten to several thousand times higher than those in the surrounding water. In this study we examined the content of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Sr and V) in sediment, water and different organs of Phragmites australis collected from Lake Skadar, Montenegro, during different seasons of the year 2011. The highest concentrations of Sr were found in the leaves, while the other studied metals showed their highest concentrations in the roots. Thus, P. australis is considered a root bioaccumulation species. For most metals the concentration in roots and stems increases over time until the end of the growing season, and then decreases, while the concentration in leaves increases even after the growing season of the plant. If P. australis is used for phytoremediation purposes, then it should be harvested after the growing season because then the concentration of metals in the aboveground parts is maximal.


2013 ◽  
Vol 52 (23) ◽  
pp. 7930-7939 ◽  
Author(s):  
Ksenija R. Kumrić ◽  
Anđelka B. Đukić ◽  
Tatjana M. Trtić-Petrović ◽  
Nikola S. Vukelić ◽  
Zoran Stojanović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document