scholarly journals The laminar pattern of resting state in human cerebral cortex

2021 ◽  
Vol 76 ◽  
pp. 8-16
Author(s):  
Anna Rita Egbert ◽  
Emilia Łojek ◽  
Bharat Biswal ◽  
Agnieszka Pluta
2018 ◽  
Author(s):  
Jiyoung Kang ◽  
Chongwon Pae ◽  
Hae-Jeong Park

AbstractThe resting-state brain is often considered a nonlinear dynamic system transitioning among multiple coexisting stable states. Despite the increasing number of studies on the multistability of the brain system, the processes of state transitions have rarely been systematically explored. Thus, we investigated the state transition processes of the human cerebral cortex system at rest by introducing a graph-theoretic analysis of the state transition network. The energy landscape analysis of brain state occurrences, estimated using the pairwise maximum entropy model for resting-state fMRI data, identified multiple local minima, some of which mediate multi-step transitions toward the global minimum. The state transition among local minima is clustered into two groups according to state transition rates and most inter-group state transitions were mediated by a hub transition state. The distance to the hub transition state determined the path length of the inter-group transition. The cortical system appeared to have redundancy in inter-group transitions when the hub transition state was removed. Such a hub-like organization of transition processes disappeared when the connectivity of the cortical system was altered from the resting-state configuration. In summary, the resting-state cerebral cortex has a well-organized architecture of state transitions among stable states, when evaluated by nonlinear systematic approach.


2020 ◽  
Vol 75 (3) ◽  
pp. 226-233
Author(s):  
Svetlana P. Sergeeva ◽  
Aleksey V. Lyundup ◽  
Valery V. Beregovykh ◽  
Petr F. Litvitskiy ◽  
Aleksey A. Savin ◽  
...  

Background. The search for protein (these include c-fos, ERK1/2, MAP2, NOTCH1) expression that provide neuroplasticity mechanisms of the cerebral cortex after ischemic stroke (IS) patterns is an urgent task. Aims to reveal c-fos, ERK1/2, MAP2, NOTCH1 proteins expression patterns in human cerebral cortex neurons after IS. Materials and methods. We studied 9 left middle cerebral artery (LMCA) IS patients cerebral cortex samples from 3 zones: 1 the zone adjacent to the necrotic tissue focus; 2 zone remote from the previous one by 47 cm; 3 zone of the contralateral hemisphere, symmetric to the IS focus. Control samples were obtained from 3 accident died people. Identification of targeted proteins NSE, c-fos, ERK1/2, MAP2, NOTCH1 was performed by indirect immunoperoxidase immunohistochemical method. Results. Moving away from the ischemic focus, there is an increase in the density of neurons and a decrease in the damaged neurons proportion, the largest share of c-fos protein positive neurons in zone 2, NOTCH1 positive neurons in zone 1, smaller fractions of ERK1/2 and MAP2 positive neurons compared to the control only in samples of zone 1. Conclusions. With the IS development, the contralateral hemisphere is intact tissue increased activation zone, while the zones 1 and 2 have pathological activation signs. In zone 1 of the range, the adaptive response of the tissue decreases, and in zone 2 it expands. Therefore, a key target for therapeutic intervention is zone 2.


Sign in / Sign up

Export Citation Format

Share Document