scholarly journals Poly-ADP ribosylation in DNA damage response and cancer therapy

2019 ◽  
Vol 780 ◽  
pp. 82-91 ◽  
Author(s):  
Wei-Hsien Hou ◽  
Shih-Hsun Chen ◽  
Xiaochun Yu
Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1156
Author(s):  
Jiachen Xuan ◽  
Kezia Gitareja ◽  
Natalie Brajanovski ◽  
Elaine Sanij

The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400–600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruixue Huang ◽  
Ping-Kun Zhou

AbstractGenomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells’ DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists’ findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely “environmental gear selection” to describe DNA damage repair pathway evolution, and “DNA damage baseline drift”, which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.


2017 ◽  
Vol 45 (14) ◽  
pp. 8129-8141 ◽  
Author(s):  
Chao Liu ◽  
Aditi Vyas ◽  
Muzaffer A. Kassab ◽  
Anup K. Singh ◽  
Xiaochun Yu

Nature ◽  
2012 ◽  
Vol 481 (7381) ◽  
pp. 287-294 ◽  
Author(s):  
Christopher J. Lord ◽  
Alan Ashworth

2017 ◽  
Vol 24 (15) ◽  
Author(s):  
Spyridon P. Basourakos ◽  
Likun Li ◽  
Ana M. Aparicio ◽  
Paul G. Corn ◽  
Jeri Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document