breast cancer therapy
Recently Published Documents


TOTAL DOCUMENTS

1239
(FIVE YEARS 332)

H-INDEX

54
(FIVE YEARS 13)

2022 ◽  
Vol 103 ◽  
pp. 108433
Author(s):  
Kandasamy Saravanakumar ◽  
Sathiyaseelan Anbazhagan ◽  
Janandi Pujani Usliyanage ◽  
Kumar Vishven Naveen ◽  
Udari Wijesinghe ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Yang ◽  
Quanfeng Zhao ◽  
Zhe Peng ◽  
Yunjiang Zhou ◽  
Miao-Miao Niu ◽  
...  

Chemoresistance is a major therapeutic obstacle in the treatment of breast cancer. Therefore, how to overcome chemoresistance is a problem to be solved. Here, a glutathione (GSH)/cathepsin B (CB) dual-controlled nanomedicine formed by cyclic disulfide-bridged peptide (cyclic-1a) as a potent anticancer agent is reported. Under the sequential treatment of GSH and CB, cyclic-1a can efficiently self-assemble into nanofibers. In vitro studies show that cyclic-1a promotes the apoptosis of MCF-7/DOX cells by inducing the cleavages of caspase-3 and PARP. In vivo studies confirm that cyclic-1a significantly inhibits the progression of MCF-7/DOX cells-derived xenograft in nude mice, with no obvious adverse reactions. This study provides a paradigm of GSH/CB dual-controlled nanomedicine for high-efficacy and low-toxic DOX-resistant breast cancer therapy.


Drug Delivery ◽  
2021 ◽  
Vol 29 (1) ◽  
pp. 128-137
Author(s):  
Yun-Chang Zhang ◽  
Pei-Yu Zeng ◽  
Zhi-Qiang Ma ◽  
Zi-Yue Xu ◽  
Ze-Kun Wang ◽  
...  

Drug Delivery ◽  
2021 ◽  
Vol 29 (1) ◽  
pp. 1-9
Author(s):  
Yun-Chang Zhang ◽  
Pei-Yu Zeng ◽  
Zhi-Qiang Ma ◽  
Zi-Yue Xu ◽  
Ze-Kun Wang ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 6
Author(s):  
Hamidreza Sahrayi ◽  
Elham Hosseini ◽  
Sara Karimifard ◽  
Nazanin Khayam ◽  
Seyed Mohammadmahdi Meybodi ◽  
...  

Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acid-targeting moiety (NLCPFA). Drug release from the formulated particles exhibited pH-sensitive properties in which the niosome showed low and high release in physiological and cancerous conditions, respectively. The results revealed a synergic effect in cytotoxicity by co-loading letrozole and cyclophosphamide with an efficacy increment in NLCPFA use in comparison with NLC. The NLCPFA resulted in the greatest drug internalization compared to the non-targeted formulation and the free drug. Additionally, downregulation of cyclin-D, cyclin-E, MMP-2, and MMP-9 and upregulating the expression of caspase-3 and caspase-9 genes were observed more prominently in the nanoformulation (particularly for NLCPFA) compared to the free drug. This exciting data indicated that niosome-based nanocarriers containing letrozole and cyclophosphamide with controlled release could be a promising platform for drug delivery with potential in breast cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6377
Author(s):  
Chhanda Bose ◽  
Ashly Hindle ◽  
Jihyun Lee ◽  
Jonathan Kopel ◽  
Sahil Tonk ◽  
...  

Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.


2021 ◽  
Author(s):  
Richard Baker ◽  
Giorgio Dell’Acqua ◽  
Aleksander Richards ◽  
M Julie Thornton

Abstract Background:Hair loss/thinning is a common side effect of tamoxifen in estrogen receptor (ER) positive breast cancer therapy. Some nutraceuticals known to promote hair growth are avoided during breast cancer therapy for fear of phytoestrogenic activity. However, not all botanical ingredients have similarities to estrogens, and in fact, no information exists as to the true interaction of these ingredients with tamoxifen. Therefore, this study sought to ascertain the effect of nutraceuticals (+/- estrogen/tamoxifen), on proliferation of breast cancer cells and the relative expression of ERα/β.Methods:Kelp, Astaxanthin, Saw Palmetto, Tocotrienols, Maca, Horsetail, Resveratrol, Curcumin and Ashwagandha were assessed on proliferation of MCF7, T-47D and BT483 breast cancer cell lines +/- 17β-estradiol and tamoxifen. Each extract was analysed by high performance liquid chromatography (HPLC) prior to use. Cellular ERα and ERβ expression was assessed by qRT-PCR and western blot. Changes in the cellular localisation of ERα:ERβ and their ratio following incubation with the nutraceuticals was confirmed by immunocytochemistry.Results:Estradiol stimulated DNA synthesis in three different breast cancer cell lines: MCF-7, T-47D and BT483, which was inhibited by tamoxifen; this was mirrored by a specific ERα agonist in TD47 and BT483 cells. Nutraceuticals did not interfere with tamoxifen inhibition of estrogen; some even induced further inhibition when combined with tamoxifen. The ERα:ERβ ratio was higher at mRNA and protein level in all cell lines. However, incubation with nutraceuticals induced a shift to higher ERβ expression and a localization of ERs around the nuclear periphery.Conclusions:As ERα is the key driver of estrogen-dependent breast cancer, if nutraceuticals have a higher affinity for ERβ they may offer a protective effect, particularly if they synergize and augment the actions of tamoxifen. Since ERβ is the predominant ER in the hair follicle, further studies confirming whether nutraceuticals can shift the ratio towards ERβ in hair follicle cells would support a role for them in hair growth. Although more research is needed to assess safety and efficacy, this promising data suggests the potential of nutraceuticals as adjuvant therapy for hair loss in breast cancer patients receiving endocrine therapy.


Sign in / Sign up

Export Citation Format

Share Document