Experimental and numerical investigation of ductile-to-brittle transition in a pressure vessel steel

2008 ◽  
Vol 496 (1-2) ◽  
pp. 25-35 ◽  
Author(s):  
M.K. Samal ◽  
M. Seidenfuss ◽  
E. Roos ◽  
B.K. Dutta ◽  
H.S. Kushwaha
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5256
Author(s):  
Gábor Vértesy ◽  
Antal Gasparics ◽  
Ildikó Szenthe ◽  
Madalina Rabung ◽  
Melanie Kopp ◽  
...  

Nondestructive magnetic measurement methods can be successfully applied to determine the embrittlement of nuclear pressure vessel steel caused by neutron irradiation. It was found in previous works that reasonable correlation could be obtained between the nondestructively measured magnetic parameters and destructively determined ductile-to-brittle transition temperature. However, a large scatter of the measurement points was detected even in the cases of the non-irradiated reference samples. The reason for their scattering was attributed to the local inhomogeneity of material. This conclusion is verified in the present work by applying three different magnetic methods on two sets of Charpy samples made of two different reactor steel materials. It was found that by an optimal magnetic pre-selection of samples, a good, linear correlation can be found between magnetic parameters as well as the ductile-to-brittle transition temperature with low scattering of points. This result shows that neutron irradiation embrittlement depends very much on the local material properties.


Author(s):  
Sumit Bhowmik ◽  
Prasanta Sahoo ◽  
Sanjib Kumar Acharyya ◽  
Sankar Dhar ◽  
Jayanta Chattopadhyay

The paper considers the effect of microstructure degradation on fracture toughness of 20MnMoNi55 pressure vessel steel. This degradation is reflected through the shift of fracture toughness vs. temperature curve along the temperature axis and rise in reference temperature in ductile to brittle transition (DBT) region. Hardness also depends on the microstructure of metallic alloys. The present study explores the correlation between hardness and fracture toughness for different microstructures in order to calibrate loss in toughness from hardness. The master curve reference temperature and microhardness for different microstructures are measured experimentally. It is observed that there exists a fair linear relation between microhardness and reference temperature.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1224
Author(s):  
Maria S. Yankova ◽  
Andrey P. Jivkov ◽  
Rajesh Patel

Ductile-to-brittle-transition refers to observable change in fracture mode with decreasing temperature—from slow ductile crack growth to rapid cleavage. It is exhibited by body-centred cubic metals and presents a challenge for integrity assessment of structural components made of such metals. Local approaches to cleavage fracture, based on Weibull stress as a cleavage crack-driving force, have been shown to predict fracture toughness at very low temperatures. However, they are ineffective in the transition regime without the recalibration of Weibull stress parameters, which requires further testing and thus diminishes their predictive capability. We propose new Weibull stress formulation with thinning function based on obstacle hardening model, which modifies the number of cleavage-initiating features with temperature. Our model is implemented as a post-processor of finite element analysis results. It is applied to analyses of standard compact tension specimens of typical reactor pressure vessel steel, for which deformation and fracture toughness properties in the transition regime are available. It is shown that the new Weibull stress is independent of temperature, and of Weibull shape parameter, within the experimental error. It accurately predicts the fracture toughness at any temperature in the transition regime without relying upon empirical fits for the first time.


Sign in / Sign up

Export Citation Format

Share Document