Application of long-range ordering in the synthesis of a nanoscale Ni2 (Cr,Mo) superlattice with high strength and high ductility

2009 ◽  
Vol 500 (1-2) ◽  
pp. 188-195 ◽  
Author(s):  
H.M. Tawancy ◽  
M.O. Aboelfotoh
2009 ◽  
Vol 633-634 ◽  
pp. 421-435 ◽  
Author(s):  
H.M. Tawancy

It is shown that long-range ordering in certain alloys based upon the Ni-Mo system can provide a viable means for synthesizing bulk nanoscale materials combing high strength and high ductility. Three alloys were included in the study with nominal chemical compositions of Ni-27Mo, Ni-27Mo-0.03B, and Ni-27Mo-12Cr all in weight %. Ordering was induced by thermal aging at 700 oC resulting in a D1a superlattice (Ni4Mo) in the Ni-27Mo and Ni-27Mo-0.03B alloys, and a Pt2Mo-type superlattice [Ni2(Cr,Mo)] in the Ni-27Mo-12Cr alloy. During the early stages of aging, atomic order in the Ni-27Mo alloy was completed homogeneously in the matrix resulting in a nanoscale superlattice with high strength and high ductility, however, a considerable loss of ductility occurred after extended aging. The results suggested that this behavior was not related to the degree of atomic order but rather to a change in morphology resulting from a heterogeneous ordering reaction at grain boundaries promoted by strain-induced recrystallization. Although a nanoscale superlattice combining high strength and high ductility could be synthesized in the Ni-27Mo alloy by proper aging treatment, it is demonstrated that the heterogeneous ordering reaction could be suppressed by the addition of boron or chromium to improve the thermal stability of the alloy system. On the average, a combination of about 800 MPa yield strength and 40% tensile elongation at room temperature could be achieved in the alloys studied. Deformation in the ordered state is found to occur by twinning, which has been related to the crystallography of the disorder-order transformation.


1987 ◽  
Vol 48 (C8) ◽  
pp. C8-519-C8-524
Author(s):  
G. RENAUD ◽  
M. BELAKHOVSKY ◽  
J. HILLAIRET ◽  
M. WUTTIG ◽  
G. BESSENAY ◽  
...  

Alloy Digest ◽  
1956 ◽  
Vol 5 (6) ◽  

Abstract DUCTALLOY is a high-carbon ferrous material having high strength, high ductility, toughness and machinability. It is supplied in three grades: pearlitic grade 80, ferritic grade 60, and austenitic grade A50. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-14. Producer or source: American Brake Shoe Company.


Alloy Digest ◽  
1977 ◽  
Vol 26 (2) ◽  

Abstract Copper Alloy No. 165 is a copper-cadmium-tin alloy with low strength and high ductility in the annealed condition. In the hard-drawn condition, characterized by high strength and low ductility, it is used widely as an electrical conductor. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-327. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1969 ◽  
Vol 18 (9) ◽  

Abstract IN-102 is a nickel-chromium-iron alloy designed for long service at temperatures up to 1300 F. It combines high strength and high ductility at the elevated temperatures with a high degree of structural stability. It is used for aerospace, power and steam turbine components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-147. Producer or source: International Nickel Company Inc..


Alloy Digest ◽  
1964 ◽  
Vol 13 (6) ◽  

Abstract Nivco 10 is a cobalt-base turbine alloy having a combination of high damping capacity, high strength and high ductility. It is a precipitation hardening alloy recommended for use at temperatures up to 1200 F, such as turbine blades. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-37. Producer or source: Westinghouse Electric Corporation.


2020 ◽  
Author(s):  
O. Trudonoshyn ◽  
O. Prach ◽  
P. Randelzhofer ◽  
K. Durst ◽  
С. Körner

2015 ◽  
Vol 68 ◽  
pp. 94-104 ◽  
Author(s):  
Ravi Ranade ◽  
Victor C. Li ◽  
William F. Heard

Sign in / Sign up

Export Citation Format

Share Document