tensile elongation
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 73)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yongqin Hu ◽  
Chen Hou ◽  
Yuxia Shi ◽  
Jiamei Wu ◽  
Da Yang ◽  
...  

Abstract Electromagnetic pollution seriously affects the human reproductive system, cardiovascular system, people’s visual system, and so on. A novel versatile stretchable and biocompatible electromagnetic interference (EMI) shielding film has been developed, which could effectively attenuate electromagnetic radiation. The EMI shielding film was fabricated with a convenient solution casting and steam annealing with 2D MXene, iron oxide nanoparticles, and soluble polyurethane. The EMI shielding effectiveness is about 30.63 dB at 8.2 GHz, based on its discretized interfacial scattering and high energy conversion efficiency. Meanwhile, the excellent tensile elongation is 30.5%, because of the sliding migration and gradient structure of the nanomaterials doped in a polymer matrix. In addition, the film also demonstrated wonderful biocompatibility and did not cause erythema and discomfort even after being attached to the arm skin over 12 hours, which shows the great potential for attenuation of electromagnetic irradiation and protection of human health.


2021 ◽  
Author(s):  
Dierk Raabe ◽  
Liuliu Han ◽  
Fernando Fernando ◽  
Isnaldi Souza Filho ◽  
Nicolas Peter ◽  
...  

Abstract Soft magnetic materials (SMMs) are indispensable components in electrified applications and sustainable energy supply, allowing permanent magnetic flux variations in response to high frequency changes of the applied magnetic field, at lowest possible energy loss1. The global trend towards electrification of transport, households and manufacturing leads to a massive increase in energy consumption due to hysteresis losses2. Therefore, minimizing coercivity, which scales the losses in SMMs, is crucial3. Yet, meeting this target alone is not enough: SMMs used for instance in vehicles and planes must withstand severe mechanical loads, i.e., the alloys need high strength and ductility4. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteretic losses5. Here, we introduce a new approach to overcome this dilemma. We have designed a Fe-Co-Ni-Ta-Al multicomponent alloy with ferromagnetic matrix and paramagnetic coherent nanoparticles of well-controlled size (~91 nm) and high volume fraction (55%). They impede dislocation motion, enhancing strength and ductility. Yet, their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the material’s soft magnetic properties. The new material exhibits an excellent combination of mechanical and magnetic properties outperforming other multicomponent alloys and conventional SMMs. It has a tensile strength of ~1336 MPa at 54% tensile elongation, an extremely low coercivity of ~78 A/m (<1 Oe) and a saturation magnetization of ~100 Am2/kg. The work opens new perspectives on developing magnetically soft and mechanically strong and ductile materials for the sustainable electrification of industry and society.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5970
Author(s):  
Jie Wang ◽  
Haoyu Zhou ◽  
Yong Gao ◽  
Yupeng Xie ◽  
Jing Zhang ◽  
...  

Robots are very essential for modern nuclear power plants to monitor equipment conditions and eliminate accidents, allowing one to reduce the radiations on personnel. As a novel robot, a soft robot with the advantages of more degrees of freedom and abilities of continuously bending and twisting has been proposed and developed for applications in nuclear power industry. Considering the radiation and high-temperature environment, the overall performance improvement of the flexible materials used in the soft nuclear robot, such as the tensile property and gamma-ray shielding property, is an important issue, which should be paid attention. Here, a flexible gamma-ray shielding material silicone-W-based composites were initially doped with nano titanium oxide and prepared, with the composition of 20 silicone-(80-x) W-(x) TiO2, where x varied from 0.1 to 2.0 wt.%. Structural investigations on SEM and EDS were performed to confirm the structure of the prepared composites and prove that all the chemicals were included in the compositions. Moreover, the tensile property of the composites at 25, 100, and 150 °C were investigated to study the effect of working temperature on the flexibility of the compositions. The attenuation characteristics including the linear attenuation coefficients and mass attenuation coefficients of the prepared silicone-W or silicone-W-TiO2-based composites with respect to gamma ray were investigated. The stability of the silicone–tungsten-TiO2-based composite at high temperature was studied for the first time. In addition, the influence of nano TiO2 additive on the property’s variation of silicone-W-based composites was initially studied. The comparison of the properties such as the tensile elongation, thermal stability, and gamma-ray shielding of the synthesized silicone-W and silicone-W-TiO2 composites showed that the addition of nano TiO2 powders could be useful to develop novel gamma-ray-shielding materials for radiation protection of soft robots or other applications for which soft gamma-ray-shielding materials are needed.


2021 ◽  
Vol 1046 ◽  
pp. 105-110
Author(s):  
Nawadon Petchwattana ◽  
Kittisak Promsuk ◽  
Junnapat Rabuepin ◽  
Phoempol Siangdang

In this paper, poly(lactic acid) (PLA) was modified with poly(butylene succinate) (PBS) and talc to obtain PLA formulation with good toughness and high crystallization rate. PBS was added as a toughening agent at 40wt% and talc was added as a nucleating agent from 2 to 10wt%. Experimental results showed that both the tensile modulus and strength of PLA significantly decreased with the presence of PBS. Both values were found to notably increase with talc concentration and reached the maximum value at 8wt%. The tensile elongation at break was found to remarkably increase with PBS blending. However, it was linearly dropped with talc addition. Thermal test results also indicated the faster crystallization rate with the decreased crystallization temperature (Tc) and increased degree of crystallinity (Xc), by more than four times, when talc was added at least 4wt%. The isothermal crystallization half-time (t1/2) was applied to provide the data for injection molding process. The results showed that neat PLA required more than 25 min to obtain its half crystallinity. Minimum t1/2 of 3.45 min was obtained when talc was added to PLA/PBS at 8wt%. Heat distortion temperature (HDT) was also found to increase from 56.8 (neat PLA) to 97.2°C (8wt% talc). Based on the experimental results, the optimum talc concentration was 8wt% which provided the highest crystallization rate and thermal stability. The practical application of this formulation is for the biodegradable injection molding products.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Piotr Nikiel ◽  
Mirosław Wróbel ◽  
Stefan Szczepanik ◽  
Michał Stępień ◽  
Krzysztof Wierzbanowski ◽  
...  

AbstractSelective laser melted Titanium grade 23 was characterized by low porosity, relatively large surface roughness and pronounced surface texture (i.e. surface grooves orientation). The band/layer microstructure was built of mixed α and β phases. The as printed structure exhibited very high compressive residual stresses with strong anisotropy (i.e., − 512 ± 17 MPa and − 282 ± 14 MPa along the laser scanning direction and along the transverse direction, respectively) and strong fiber crystallographic texture. The latter one is responsible for the anisotropy of hardness in the material. Annealing at 600 °C during four hours significantly removed residual stresses (i.e. to − 14 ± 2.8 MPa) and slightly weakened the texture. Yield strength, 1120 ± 50 MPa, and ultimate tensile strength, 1210 ± 50 MPa, of the annealed material are significantly higher and tensile elongation, 3.9%, lower than for commercial Titanium grade 23. Final mechanical polishing to obtain flat and relatively smooth surface induced desired compression residual stress in the subsurface (i.e., equal to about − 90 MPa). Low absorbed gas contents (oxygen, nitrogen, hydrogen) and low porosity of the printed material indicates the correctness of the technology and allows the printed material to be classified as meeting the requirements of ASTM standards for Titanium grade 23. Besides traditional testing techniques, the optical profilometry, X-ray analysis (texture and residual stresses measurement) and infrared absorption method were applied for the product characterization and some potential of these testing methods and usefulness in technological practice was discussed, what can be particularly interesting both to practitioners from industry and researches from scientific laboratories.


Science ◽  
2021 ◽  
Vol 373 (6557) ◽  
pp. 912-918 ◽  
Author(s):  
Peijian Shi ◽  
Runguang Li ◽  
Yi Li ◽  
Yuebo Wen ◽  
Yunbo Zhong ◽  
...  

2021 ◽  
Author(s):  
Yingrui Ji ◽  
Long Xu ◽  
Qingqing Xu ◽  
Xuan Liu ◽  
Sen Lin ◽  
...  

Abstract This study aimed to prepare epoxidized silkworm pupae oil (ESPO) and investigate their effects on the thermal stability and plasticization of polyvinyl chloride (PVC) films. A chemo-enzymatic method of ESPO was developed in the presence of Lipase SMG1-F278N and H2O2 in natural deep eutectic solvents (DESs). Lipase SMG1-F278N could initiate the epoxidation reaction effectively at room temperature with a negligible loss of activities 10 batches. A maximum oxirane value of 6.94% was obtained. The formation of oxirane ring in ESPO was confirmed by FT-IR and 13C NMR spectra. Moreover, ESPO showed a better thermal stability and lower freezing point than epoxidized soybean oil (ESO). It was demonstrated that ESPO had a good frost resistance. In addition, ESPO showed a significantly improved plasticizing effect on flexible polyvinyl chloride (PVC). Compared with ESO, ESPO could increase the tensile elongation at break effectively. A significantly lower migration rate of plasticizer was observed in PVC plasticized with ESPO.


2021 ◽  
Vol 1 (2) ◽  
pp. 122-133
Author(s):  
Fernando Luiz Lavoie ◽  
Marcelo Kobelnik ◽  
Clever Aparecido Valentin ◽  
Érica Fernanda da Silva Tirelli ◽  
Maria de Lurdes Lopes ◽  
...  

The present work evaluated two high-density polyethylene (HDPE) geomembranes exhumed from mining facility constructions in Brazil. The MIN sample was exhumed from a pond for water use for the iron ore process after 7.92 years of exposure. The MIN2 sample was exhumed from a spillway channel of a ferronickel tailing dam after 10.08 years of service. The physical evaluations showed high depletion for antioxidants that work in the temperature range of 200 °C. The samples presented brittle tensile behavior and had similar behaviors between stress cracking and tensile. Low tensile elongation values and low-stress crack resistance were noted. The MIN2 sample presented a higher melt flow index (MFI) value and lower stress crack resistance. Thermogravimetric curves (TG) under synthetic air purge gas evaluation showed that both samples presented a similar behavior during the evaluation but had several mass losses. The results showed that exothermic and endothermic events occurred with loss of mass and showed no combustion events in the differential thermal analysis (DTA) curve evaluation. Differential scanning calorimetry (DSC) analysis showed no changes in the samples’ behavior. Thus, the results of tensile, stress cracking, and viscosity properties can demonstrate that changes in polymer structure occurred after field exposures.


Author(s):  
Roberto C Vázquez Fletes ◽  
Erick O Cisneros López ◽  
Pedro Ortega Gudiño ◽  
Eduardo Mendizábal ◽  
Rubén González Núñez ◽  
...  

This study investigates the addition of ground tire rubber (GTR) into virgin polyamide 6 (PA6) to produce thermoplastic elastomer (TPE) blends. In particular, a wide range of GTR concentration (0–100% wt.) was possible by using a simple dry blending technique of the materials in a powder form followed by compression molding. The molded samples were characterized in terms of morphological (scanning electron microscopy), physical (density and hardness) and mechanical (tension, flexion and impact) properties. The results showed a decrease in tensile and flexural moduli and strengths with GTR due to its elastomeric nature. However, significant increases were observed on the tensile elongation at break (up to 167%) and impact strength (up to 131%) compared to the neat PA6 matrix. Based on the results obtained, an optimum GTR content around 75% wt. was observed which represents a balance between high recycled rubber content and a sufficient amount of matrix to recover all the particles. These results represent a first step showing that a simple processing method can be used to produce low cost PA6/GTR compounds with a wide range of physical and mechanical properties.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1097
Author(s):  
Umer Masood Chaudry ◽  
Seung-Chang Han ◽  
Fathia Alkelae ◽  
Tea-Sung Jun

In the present study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir welded (FSW) DP780 steel sheets was investigated. FSW was carried out at a constant tool rotation speed of 400 rpm and different welding speeds (200 mm/min and 400 min/min). A defect free weld was witnessed for both of the welding conditions. The mutual effect of severe plastic deformation and frictional heat generation by pin rotation during the FSW process resulted in grain refinement due to dynamic recrystallization in the stir zone (SZ) and thermo-mechanically affected zone (TMAZ). Lower tensile elongation and higher yield and ultimate tensile strengths were recorded for welded-samples as compared to the base material (BM) DP780 steel. The joints were subsequently annealed at various temperatures at 450–650 °C for 1 h. At higher annealing temperature, the work hardening rate of joints gradually decreased and subsequently failed in the softened heat-affected zone (HAZ) during the uniaxial tensile test. Reduction in yield strength and tensile strength was found in all PWHT conditions, though improvement in elongation was achieved by annealing at 550 °C. The digital image correlation analysis showed that an inhomogeneous strain distribution occurred in the FSWed samples, and the strain was particularly highly localized in the advancing side of interface zone. The nanoindentation measurements covering the FSWed joint were consistent with an increase of the annealing temperature. The various grains size in the BM, TMAZ, and SZ is the main factor monitoring the hardness distribution in these zones and the observed discrepancies in mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document