Fatigue behavior of functionally graded steel produced by electro-slag remelting

2013 ◽  
Vol 584 ◽  
pp. 143-149 ◽  
Author(s):  
M. Salehi ◽  
Y. Alizadeh Vaghasloo ◽  
M. Naderi ◽  
M. Ramezani Movaffagh ◽  
A. Varmaziar
2020 ◽  
Vol 1 (01) ◽  
pp. 40-47
Author(s):  
Aissa Bouaissi ◽  
Nabaa S Radhi ◽  
Karrar F. Morad ◽  
Mohammad H. Hafiz ◽  
Alaa Abdulhasan Atiyah

Shape Memory Alloys (SMAs) are one of the most hopeful smart materials, especially, Nickel–Titanium (NiTi or Nitinol). These alloys are great and desirable due to their excellent reliability and behavior among all the commercially available alloys. In addition, strain recovery, (Ni–Ti) is granulated for a wide variety of medical uses because of its favorite properties such as fatigue behavior, corrosion resistance and biocompatibility. This paper explores the creation and the characterization of functionally graded (NiTi) materials. This work demonstrations the impact of Nickel contains changes on the characteristics of NiTi shape memory alloy, in order to obtain the suitable addition of Nickel contain, which gives the optimal balance between hardness, start and finish martensitic point, shape recovery and shape effect of alloys properties. These materials are prepared to obtain suddenly or gradually microstructure or composition differences inside the structure of one piece of material, the specimens made by powder metallurgy process and the influence of every layer of composite by; micro-hardness, transformation temperature DSC and shape effect. The hardness value and shape recovery decrease with increase nickel content. superior shape memory effect (SME) and shape recovery (SR) properties (i.e., 8.747, 10.270 for SMA-FGM1 SMA-FGM2 respectively, and SR is 1.735, 2.977 for SMA-FGM1 SMA-FGM2) respectively.  


2018 ◽  
Vol 7 (3.12) ◽  
pp. 456 ◽  
Author(s):  
Ram Prasad. K ◽  
Murali. G ◽  
Parthiban Kathirve ◽  
Haridharan M K ◽  
Karthikeyan. K

This study examines compressive strength of this functionally graded steel fibre reinforced concrete (FGFRPAC). A five mixes were prepared and tested in the present study. The first series of FGFRPAC were prepared and reinforced in three layers of 3%, 1.5% and 3% with crimped, hooked end. The second series were reinforced with 2.5% steel fibre equally in all the three layers. The average amount of fibre used in FGFRPAC specimen was 2.5% which is similar to the fibre dosage used in the second series were the fibres are equally spread in all the three layers. The gathered results revealed that employing FGFRPAC leads to more enhancement in compressive strength than conventional steel fibre reinforced concrete.


2018 ◽  
Vol 150 ◽  
pp. 1-15 ◽  
Author(s):  
S. Zhao ◽  
S.J. Li ◽  
S.G. Wang ◽  
W.T. Hou ◽  
Y. Li ◽  
...  

1996 ◽  
Vol 118 (4) ◽  
pp. 522-528 ◽  
Author(s):  
B. D. Choules ◽  
K. Kokini

An analytical study was performed to study the effect of architecture on the initiation of surface cracking in multilayer ceramic coatings. Two modes of crack initiation were considered: 1) tension resulting from stress relaxation, and 2) cyclic thermal fatigue. Transient temperature distributions were determined using a finite difference technique, and stress distributions were calculated using a multilayer beam theory. The results showed that as more layers were added and as the ceramic coating became thinner, lower maximum surface stresses resulted during cooling after stress relaxation. Also, a thick eight layer coating had similar thermal fatigue behavior to a thin single layer coating. It was determined that a thick multilayer coating adds a significant amount of thermal protection when compared to a thin single layered coating.


Sign in / Sign up

Export Citation Format

Share Document