The effects of pre-cycle damage on subsequent material behavior and fatigue resistance of SUS 304 stainless steel

2015 ◽  
Vol 636 ◽  
pp. 320-325 ◽  
Author(s):  
Liang-Hsiung Chou ◽  
Yung-Chuan Chiou ◽  
Ying-Jen Huang
1994 ◽  
Vol 116 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Hiromasa Ishikawa ◽  
Katsuhiko Sasaki

A series of tests for creep, stress relaxation, and biaxial ratchetting of type 304 stainless steel after cyclic preloading were carried out to investigate their interaction. The interesting fact was pointed out that back stress in cyclic plasticity played an important role to describe creep, relaxation, and biaxial ratchetting following cyclic preloading. Then, the test results showed that the material behavior due to creep after cyclic preloading could be represented by the modified Bailey-Norton law with stress levels evaluated from the current center of the yield surface, i.e., back stress which was determined by the hybrid constitutive model for cyclic plasticity proposed by the authors. In addition, biaxial ratchetting of axial strain induced by cyclic shear straining after cyclic preloading was expressed by the shear stress amplitude, the number of cycle and the axial stress level from the current center.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1408
Author(s):  
Yu-Hsuan Chung ◽  
Tai-Cheng Chen ◽  
Hung-Bin Lee ◽  
Leu-Wen Tsay

The effects of micro-shot peening on the rotating bending fatigue resistance of AISI 304 stainless steel (SS) were investigated in this study. The strain-hardening, surface roughness and induced residual stress were inspected and correlated with fatigue strength. Micro-shot peening caused intense strain-hardening, phase transformation and residual stress but was also accompanied by a minor increase in surface roughness. A nanograined structure, which was advantageous to fatigue resistance, was observed in the severe shot-peened layer. The absence of microcracks, minor increase in surface roughness, nanograined structure and induced high compressive residual stress in the shot-peened layer were responsible for the improved fatigue strength of AISI 304 SS.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Sign in / Sign up

Export Citation Format

Share Document