scholarly journals The role of the microstructure on the influence of hydrogen on some advanced high-strength steels

2018 ◽  
Vol 715 ◽  
pp. 370-378 ◽  
Author(s):  
Qinglong Liu ◽  
Qingjun Zhou ◽  
Jeffrey Venezuela ◽  
Mingxing Zhang ◽  
Andrej Atrens
2016 ◽  
Vol 850 ◽  
pp. 197-201
Author(s):  
Chao Zhi ◽  
Yi Fei Gong ◽  
Ai Min Zhao ◽  
Jian Guo He ◽  
Ran Ding

The wear performance and wear mechanism under two-body abrasion of five advanced high strength steels, i.e. Nanobainite (NB) steel, Tempered Martensitic (TM) steel, Dual Phase (DP) steel, Transformation Induced Plasticity (TRIP) Steel and Twining Induced Plasticity (TWIP) steel were studied. By using the scanning electron microscopy (SEM), we investigated the wearing surface. Phase transformation strengthening behavior was also be discussed by analyzing the surface and sub-surface after abrasion. The results showed that micro-cutting was the major role of wear mode in the condition of two-body abrasion. In the circumstance of two-body abrasion, hardness was an important factor, the property of wear resistance enhanced while the hardness increased except for TM steel. NB steel possessed the best wear resistance which was 1.71 times higher than that of TWIP steel. The retained austenite transformed into martensite which can improve the hardness so that it enhanced the wear resistance of NB steel.


2014 ◽  
Vol 783-786 ◽  
pp. 3-8 ◽  
Author(s):  
Evgueni I. Poliak ◽  
Debanshu Bhattacharya

The production of advanced high strength steels (AHSS) has been rapidly expanding in recent years as these steels allow for considerable reduction in weight and enhancement of car safety due to the unique combination of high strength, toughness and formability. Driven by growing demand for sheet AHSS products from carmakers, steel producers are currently developing AHSS of the so called 3rdGeneration to further facilitate weight reduction of critical safety parts while ensuring crash worthiness and high absorbed energy. Such steels not only possess tensile strength above 1000 MPa but also are being designed for exceedingly high formability: high elongation, bendability, hole expansion and strain hardening. These enhanced properties are to be achieved in final operations of continuous annealing and/or galvanizing. However, due to complicated alloy designs of 3G AHSS the role of each manufacturing stage becomes progressively significant due to its impact on the final microstructure. Therefore, hot strip rolling gains increasing importance as one of the most critical stages responsible for producing the microstructure optimal for achieving the final properties of the sheet products without impairing downstream operations. In other words, hot rolling of AHSS has to be viewed as thermomechanical processing.


2021 ◽  
Vol 182 ◽  
pp. 106687
Author(s):  
Yu Xia ◽  
Chu Ding ◽  
Zhanjie Li ◽  
Benjamin W. Schafer ◽  
Hannah B. Blum

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1136
Author(s):  
Marcel Carpio ◽  
Jessica Calvo ◽  
Omar García ◽  
Juan Pablo Pedraza ◽  
José María Cabrera

Designing a new family of advanced high-strength steels (AHSSs) to develop automotive parts that cover early industry needs is the aim of many investigations. One of the candidates in the 3rd family of AHSS are the quenching and partitioning (QP) steels. These steels display an excellent relationship between strength and formability, making them able to fulfill the requirements of safety, while reducing automobile weight to enhance the performance during service. The main attribute of QP steels is the TRIP effect that retained austenite possesses, which allows a significant energy absorption during deformation. The present study is focused on evaluating some process parameters, especially the partitioning temperature, in the microstructures and mechanical properties attained during a QP process. An experimental steel (0.2C-3.5Mn-1.5Si (wt%)) was selected and heated according to the theoretical optimum quenching temperature. For this purpose, heat treatments in a quenching dilatometry and further microstructural and mechanical characterization were carried out by SEM, XRD, EBSD, and hardness and tensile tests, respectively. The samples showed a significant increment in the retained austenite at an increasing partitioning temperature, but with strong penalization on the final ductility due to the large amount of fresh martensite obtained as well.


Sign in / Sign up

Export Citation Format

Share Document