Numerical modeling of stress-strain relationships for advanced high strength steels

2021 ◽  
Vol 182 ◽  
pp. 106687
Author(s):  
Yu Xia ◽  
Chu Ding ◽  
Zhanjie Li ◽  
Benjamin W. Schafer ◽  
Hannah B. Blum
2018 ◽  
Author(s):  
Hassan Rezayat ◽  
Hassan Ghassemi-Armaki ◽  
Sudarsanam Suresh Babu

Resistance spot welds made from Advanced High Strength Steels (AHSS) exhibit Heat Affected Zone (HAZ) softening due to the tempering of pre-existing martensite phase and the consequent decomposition into a mixture of ferrite and cementite. Despite the high strength level for the base metal, the occurrence of HAZ softening may lead to inferior joint strength during Tension-Shear (TS) and Cross-Tension (CT) testing. In this work, we investigated the effects of the HAZ softening on the global loading response for AHSS steels with three different volume fractions of martensite. Microhardness mapping was used as a measure of martensite tempering and extent of softening. Based on the data, the softening was identified in the sub-critical heat affected zone. Hardness drop with the magnitude of 6%, 18%, and 42% was observed in steels with 16%, 52% and 100% of martensite volume fraction (MVF), respectively. In order to model the welded joint loading response using finite element methods (FEM), there is a need to represent the softening in terms of stress-strain relationships. In this work, local stress-strain curves for different weld zones were obtained by scaling the base metal constitutive properties with local hardness ratio. Finite element (FE) simulations of Tension-Shear tests showed that HAZ softening can affect the Tension-Shear load capacity of specimens more significantly when the base metal tensile strength is above 1000 MPa. The paper will discuss the validity of the above finite element approach for describing experimental results and future directions.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1136
Author(s):  
Marcel Carpio ◽  
Jessica Calvo ◽  
Omar García ◽  
Juan Pablo Pedraza ◽  
José María Cabrera

Designing a new family of advanced high-strength steels (AHSSs) to develop automotive parts that cover early industry needs is the aim of many investigations. One of the candidates in the 3rd family of AHSS are the quenching and partitioning (QP) steels. These steels display an excellent relationship between strength and formability, making them able to fulfill the requirements of safety, while reducing automobile weight to enhance the performance during service. The main attribute of QP steels is the TRIP effect that retained austenite possesses, which allows a significant energy absorption during deformation. The present study is focused on evaluating some process parameters, especially the partitioning temperature, in the microstructures and mechanical properties attained during a QP process. An experimental steel (0.2C-3.5Mn-1.5Si (wt%)) was selected and heated according to the theoretical optimum quenching temperature. For this purpose, heat treatments in a quenching dilatometry and further microstructural and mechanical characterization were carried out by SEM, XRD, EBSD, and hardness and tensile tests, respectively. The samples showed a significant increment in the retained austenite at an increasing partitioning temperature, but with strong penalization on the final ductility due to the large amount of fresh martensite obtained as well.


2004 ◽  
Vol 101 (7-8) ◽  
pp. 551-558 ◽  
Author(s):  
R. Bode ◽  
M. Meurer ◽  
T. W. Schaumann ◽  
W. Warnecke

Sign in / Sign up

Export Citation Format

Share Document