A novel two-step method to prepare fine-grained SiC/Al-Mg-Sc-Zr nanocomposite: Processing, microstructure and mechanical properties

Author(s):  
Guoqiang Huang ◽  
Jie Wu ◽  
Wentao Hou ◽  
Luqman Hakim Ahmad Shah ◽  
Abdelbaset R.H. Midawi ◽  
...  
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


2006 ◽  
Vol 503-504 ◽  
pp. 287-292 ◽  
Author(s):  
D. Nagarajan ◽  
Chakkingal Uday ◽  
P. Venugopal

Severe plastic deformation processes like equal channel angular extrusion (ECAE) have been widely investigated for their ability to produce nano/ ultra fine-grained microstructures. It is well known that submicron sized grains/ sub grains can be produced in most Al alloys using this technique. However, industrial applications of ECAE will depend heavily on the advantages conferred by this process when it is used as an intermediate processing step prior to conventional forming. In the current investigation, the influence of pre processing by ECAE on subsequent post processing by conventional cold extrusion has been investigated. ECAE extrusion was carried out on cylindrical specimens of AA 6101 using an ECAE die with a die angle of 120 degrees. Extrusion was carried out for three passes using two different processing routes. The ECA extruded specimens were subsequently subjected to conventional cold extrusion. The differences in extrusion pressures, which have a strong influence on industrial applications, were noted. Changes in microstructure and mechanical properties were also determined. The obtained results of mechanical properties and microstructure evaluation show that for high strains (strain ε ≈ 2.01), ECAE through some processing routes can be effectively used as an intermediate processing step prior to conventional cold extrusion to obtain a product with enhanced mechanical properties.


2011 ◽  
Vol 409 ◽  
pp. 474-479 ◽  
Author(s):  
C. Chan ◽  
J.L. McCrea ◽  
G. Palumbo ◽  
Uwe Erb

Monolithic and multilayered iron electrodeposits were successfully synthesized by the pulse plating electrodeposition method. Electron microscopy and Vickers microhardness measurements were used to investigate the microstructure and mechanical properties of the iron electrodeposits produced. Two types of monolithic iron coatings were produced, one with a coarse grained, columnar structure and the other with an ultra-fine grained structure. Hall-Petch type grain size strengthening was observed in these monolithic coatings. Multilayered iron coatings composed of alternating layers of coarse grained and fine grained structures were also produced. The hardness value of the multilayered coatings falls between the hardness values for the two types of monolithic coatings produced. This study has demonstrated the possibility of applying a multilayered structure design to tailor the microstructure and mechanical properties of electrodeposited iron coatings.


2010 ◽  
Vol 46 (6) ◽  
pp. 719-723 ◽  
Author(s):  
O. N. Ignatova ◽  
I. I. Kaganova ◽  
A. N. Malyshev ◽  
A. M. Podurets ◽  
V. A. Raevskii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document