Effect of carbon content of substrate on the microstructure changes and tensile behavior of clad layer of stainless steel composites

Author(s):  
Bingnan Wu ◽  
Kai Guo ◽  
Xiaoyu Yang ◽  
Yunzhe Gao ◽  
Yulong Jin ◽  
...  
2018 ◽  
Vol 32 (3) ◽  
pp. 20
Author(s):  
Manas Kumar Saha ◽  
Ritesh Hazra ◽  
Ajit Mondal ◽  
Santanu Das

Alloy Digest ◽  
2020 ◽  
Vol 69 (5) ◽  

Abstract AK Steel Type 304 is a chromium-nickel austenitic stainless steel. It is a variation of the base 18-8 grade, but with higher chromium and lower carbon content. The lower carbon content minimizes carbide precipitation due to welding and reduces its susceptibility to intergranular corrosion. Type 304 is the most versatile and widely used stainless steel grade. It combines good resistance to atmospheric corrosion and to many chemicals, food, and beverages. It has excellent formability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-1317. Producer or source: AK Steel Corporation. Originally published April 2020, corrected May 2020.


Alloy Digest ◽  
1984 ◽  
Vol 33 (2) ◽  

Abstract EASTERN STAINLESS Type 316L is a chromium-nickel-molybdenum steel with a very low carbon content (0.03 max.) Its general resistance to corrosion is similar to AISI Type 316 but, because of its low carbon content, it has superior resistance to the formation of harmful carbides that contribute to intergranular corrosion. Type 316L is used widely in many industries such as chemical, food, paper, textile, nuclear and oil. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-439. Producer or source: Eastern Stainless Steel Company.


Alloy Digest ◽  
1983 ◽  
Vol 32 (6) ◽  

Abstract EASTERN STAINLESS TYPE 304L is the basic 18-8 chromium-nickel austenitic stainless steel with a very low carbon content (0.03% max.). Its general resistance to corrosion is similar to AISI Type 304 but, because of its low carbon content, it has superior resistance to the formation of harmful carbides that indirectly contribute to intergranular corrosion. It is recommended for most articles of welded construction. Postweld annealing is not necessary. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-427. Producer or source: Eastern Stainless Steel Company.


2005 ◽  
Vol 240 (1-4) ◽  
pp. 63-70 ◽  
Author(s):  
Sheng Li ◽  
Qian-Wu Hu ◽  
Xiao-Yan Zeng ◽  
Sheng-Qin Ji
Keyword(s):  

Author(s):  
Gustavo Henrique Pelissari ◽  
Diogo Pedrino Braga ◽  
Pedro Henrique Fernandes Oliveira ◽  
Danielle Cristina Camilo Magalhães ◽  
Maurizio Ferrante ◽  
...  

Author(s):  
Zi Li ◽  
Bharath Basti Shenoy ◽  
L. Udpa ◽  
Yiming Deng

Abstract Martensitic grade stainless steel is generally used to manufacture steam turbine blades in power plants. The material degradation of those turbine blades, due to fatigue, will induce unexpected equipment damage. Fatigue cracks, too small to be detected, can grow severely in the next operating cycle and may cause failure before the next inspection opportunity. Therefore, a nondestructive electromagnetic technique, which is sensitive to microstructure changes in the material, is needed to provide a means to estimate the specimen’s fatigue life. To tackle these challenges, this paper presents a novel Magnetic Barkhausen noise (MBN) technique for garnering information relating to the material microstructure changes under test. The MBN signals are analyzed in time as well as frequency domain to infer material information that are influenced by the samples’ mate- rial state. Principal Component Analysis (PCA) is applied to reduce the dimensionality of feature data and extract higher order features. Afterwards, Probabilistic Neural Network (PNN) classifies the sample based on the percentage fatigue life to discover the most correlated MBN features to indicate the remaining fatigue life. Furthermore, one criticism of MBN is its poor repeatability and stability, therefore, Analysis of Variance (ANOVA) is carried out to analyze the uncertainty associated with MBN measurements. The feasibility of MBN technique is investigated in detecting early stage fatigue, which is associated with plastic deformation in ferromagnetic metallic structures. Experimental results demonstrate that the Magnetic Barkhausen Noise technique is a promising candidate for characterizing.


Sign in / Sign up

Export Citation Format

Share Document