Mechanical properties of unidirectional laminated hybrid SiC–Nextel™ 720 fiber-reinforced oxide matrix composites fabricated by a novel precursor infiltration and pyrolysis method

Author(s):  
Lixia Yang ◽  
Bofeng Zhong ◽  
Jiahao Liao ◽  
Peixuan Ouyang ◽  
Zhaofeng Chen ◽  
...  
2000 ◽  
Vol 2000.8 (0) ◽  
pp. 109-110
Author(s):  
M. Yoshida ◽  
K. Nagahisa ◽  
K. Kitatani ◽  
G. Sasaki ◽  
H. Fukunaga ◽  
...  

2021 ◽  
Vol 98 (2) ◽  
pp. 335-341
Author(s):  
Guihang Deng ◽  
Xun Sun ◽  
Zhenghao Tian ◽  
Ru Jiang ◽  
Haitao Liu ◽  
...  

1994 ◽  
Vol 102 (1190) ◽  
pp. 957-960 ◽  
Author(s):  
Akira KAMIYA ◽  
Kikuo NAKANO ◽  
Sigeharu MORIBE ◽  
Toru IMURA ◽  
Hiroshi ICHIKAWA

2020 ◽  
Vol 39 (7-8) ◽  
pp. 311-323
Author(s):  
Esma Avil ◽  
Ferhat Kadioglu ◽  
Cevdet Kaynak

The main objective of this study was to investigate contribution of the non-functionalized multi-walled carbon nanotubes on the vibration damping behavior of first neat epoxy resin and then unidirectional and bidirectional continuous carbon fiber reinforced epoxy matrix composites. Epoxy/carbon nanotubes nanocomposites were produced by ultrasonic solution mixing method, while the continuous carbon fiber reinforced composite laminates were obtained via resin-infusion technique. Vibration analysis data of the specimens were evaluated by half-power bandwidth method; and the mechanical properties of the specimens were determined with three-point bending flexural tests, including morphological analyses under scanning electron microscopy. It was generally concluded that when even only 0.1 wt% carbon nanotubes were incorporated into neat epoxy resin, they have contributed not only to the mechanical properties (flexural strength and modulus), but also to the vibration behavior (damping ratio) of the epoxy. When 0.1 or 0.5 wt% carbon nanotubes were incorporated into continuous carbon fiber reinforced epoxy matrix composites, although they have no additional contribution to the mechanical properties, their contribution in terms of damping ratio of the composites were significant.


2017 ◽  
Vol 52 (14) ◽  
pp. 1907-1914 ◽  
Author(s):  
Yang Zhiming ◽  
Liu Jinxu ◽  
Feng Xinya ◽  
Li Shukui ◽  
Xu Yuxin ◽  
...  

Basalt fiber reinforced aluminum matrix composites with different fiber contents (i.e. 0 wt%, 10 wt%, 30 wt% and 50 wt%) were prepared by hot-press sintering. Microstructure analysis indicates that basalt fibers are uniformly distributed in 10% basalt fiber reinforced aluminum matrix composite. The interfacial bonding between basalt fibers and aluminum matrix is good, and there is no interface reaction between basalt fiber and aluminum matrix. Quasi-static tensile, quasi-static compression and dynamic compression properties of basalt fiber reinforced aluminum composites were studied, and the influences of basalt fiber content on mechanical properties were discussed. Meanwhile, the failure mechanisms of basalt fiber reinforced aluminum matrix composites with different fiber content were analyzed.


2014 ◽  
Vol 488-489 ◽  
pp. 30-35 ◽  
Author(s):  
Cun Juan Xia ◽  
Ming Liang Wang ◽  
Hao Wei Wang ◽  
Cong Zhou

The interface between the reinforcement and the matrix is significant to metal matrix composites. The effect of aluminum (Al) content on interfacial microstructure and mechanical properties of TiO2coated carbon fiber reinforced magnesium matrix composites by squeeze casting technique have been studied (C/Mg). Mg-2wt%Al and AZ91D were used as alloy matrix. The obtained results indicate that the carbon fibers in both kinds of composites are well protected by TiO2coating, without any interfacial brittle carbide phase observed. The flexural strength of Cf-TiO2/AZ91D (1009MPa) composites is 26.5% lower than that of Cf-TiO2/Mg-2Al (1277MPa) composites. The lath-shaped precipitates of Mg17Al12in AZ91D composites lead to the mechanical properties decrease.


Sign in / Sign up

Export Citation Format

Share Document