Grain refinement mechanism in 6082 alloy fabricated by cryo-multiaxial forging

Author(s):  
Nikhil Kumar ◽  
R. Jayaganthan ◽  
G.M. Owolabi
2021 ◽  
Vol 69 ◽  
pp. 125-141
Author(s):  
Cong Sun ◽  
Yuan Hong ◽  
Shichao Xiu ◽  
Yunlong Yao

2016 ◽  
Vol 110 ◽  
pp. 644-652 ◽  
Author(s):  
Xuebing Zhao ◽  
Ji Zhang ◽  
Sha Liu ◽  
Changchun Zhao ◽  
Caixia Wang ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Soo-Bae Kim ◽  
Young-Hee Cho ◽  
Min-Su Jo ◽  
Jae-Gil Jung ◽  
Young-Kook Lee ◽  
...  

AbstractUltrasonic melt treatment (UST) was applied to Al-7Si-2Cu-1Mg melt at various temperatures of 620, 650, 700 and 785 °C. MgAl2O4 particles which were often found to be densely populated along oxide films, became effectively dispersed and well-wetted by UST. Transmission electron microscopy work combined with crystallography analysis clearly indicates that MgAl2O4 particles can act as α-Al nucleation site with the aid of UST. However, with UST, grain refinement occurred only at temperature of 620 °C and the grain size increased from 97 to 351 μm with increase of melt temperature to 785 °C for UST. In quantitative analysis of grain size and MgAl2O4 particle diameter, it was found that ultrasonic de-agglomeration decreased mean particle size of the MgAl2O4 particles, significantly reducing size from 1.2 to 0.4 μm when temperature increased from 620 to 785 °C. Such a size reduction with increased number of MgAl2O4 particles does not always guarantee grain refinement. Thus, in this work, detailed condition for achieving grain refinement by UST is discussed based on quantitative measurement. Furthermore, we tried to suggest the most valid grain refinement mechanism among the known mechanisms by investigation of the relationship between grain size and particle size with variation of melt temperature.


2010 ◽  
Vol 667-669 ◽  
pp. 379-384 ◽  
Author(s):  
X.H. An ◽  
Shi Ding Wu ◽  
Z.F. Zhang

The microstructural evolution and grain refinement of Cu-Al alloys with different stacking fault energies (SFEs) processed by equal-channel angular pressing (ECAP) were investigated. The grain refinement mechanism was gradually transformed from dislocation subdivision to twin fragmentation with tailoring the SFE of Cu-Al alloys. Concurrent with the transition of grain refinement mechanism, the grain size can be refined into from ultrafine region (1 m~100 nm) to the nanoscale (<100 nm) and then it is found that the minimum equilibrium grain size decreases in a roughly linear way with lowering the SFE. Moreover, in combination with the previous results, it is proposed that the formation of a uniform ultrafine microstructure can be formed more readily in the materials with high SFE due to their high recovery rate of dislocations and in the materials with low SFE due to the easy formation of a homogeneously-twinned microstructure.


Sign in / Sign up

Export Citation Format

Share Document