master alloys
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 68)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Jiawei Yang ◽  
Yijiang Xu ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
...  

AbstractIt is well known that the filtration efficiency of ceramic foam filters (CFF) on aluminum melt can be significantly reduced by the addition of grain refiner particles under a high inclusion load. Also, it is usually considered that the filtration process has little impact on grain refinement efficiency. In this work, the influence of inclusions and filtration on the grain refinement effect of AA 6060 alloy has been studied. This was done through TP-1 type solidification experiments where the aluminum melt prior to and after the filter during a pilot-scale filtration test was investigated. In the experiments, 80 PPi CFFs were used to filtrate aluminum melt with an ultra-high inclusion load and two addition levels of Al–3Ti–1B master alloys. It is found that both inclusions and filtration significantly reduce the grain refinement efficiency of the grain refiner master alloys. A detailed characterization of the used filters shows that the reduction of grain refinement efficiency is due to the strong adherence of TiB2 particles to the oxide films, which are blocked by the CFF during filtration. A grain size prediction model based on deterministic nucleation mechanisms and dendritic growth kinetics has been applied to calculate the solidification grain size and estimate the loss of effective grain refiner particles during filtration. It is shown that due to the strong adherence between TiB2 particles and oxide films in the melt, the high addition level of aluminum chips also has an influence on reducing the grain refinement efficiency of aluminum melt without filtration. The results of this study extended our understanding of the behavior and performance of inoculant particles in CFF and their interactions with the inclusions.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8361
Author(s):  
Andrei N. Kropachev ◽  
Sergey V. Podrezov ◽  
Alexander V. Aleksakhin ◽  
Andrey A. Gudilin ◽  
Olga A. Kondratyeva ◽  
...  

Rare earth metals (REM) with magnetic properties find application in the recently developed high-tech industries. Sensor magnetic systems based on neodymium are increasingly in demand in modern engineering and geological surveys due to their favorable combination of properties of magnetic materials based on rare earth metals. One of the problems is to obtain high-quality materials for the production of such magnetic sensors. It should be noted that the high activity of REM does not allow obtaining master alloys and REM-based alloys from metallic materials; it is advisable to use halide compounds. This work discusses a method for producing neodymium fluoride from its oxide. REM fluorides can be obtained by fluorinating the oxides of these metals. Various fluorine-containing compounds or elemental fluorine are usually used as fluorinating reagents, which have their own advantages and disadvantages. The thermodynamic and technological analysis of neodymium fluoride production processes has shown the most acceptable fluorinating agent is ammonium hydrofluoride, which was used in this work. In order to increase the productivity and degree of chemical transformation, it was proposed to perform heating stepwise; i.e., at the initial stage, heat at a speed of 3 degrees per minute, after which the heating speed was reduced to 2 degrees per minute, and finally the speed was reduced to 1 degree per minute. Due to proposed heating mode, the same productivity and yield of chemical transformation were achieved, with an increased efficiency up to 30%, which can significantly reduce the cost of production. The obtained product is used in the production of neodymium-based alloys by metallothermic reduction of a mixture of fluorides. The sensor material obtained in this way is characterized by a low (less than 0.05%) oxygen content.


2021 ◽  
Vol 5 (1) ◽  
pp. 41
Author(s):  
Ana Maria Martinez ◽  
Samuel Senanu ◽  
Henrik Gudbrandsen ◽  
Karen Sende Osen ◽  
Anne Støre ◽  
...  

Electrolysis experiments to produce Al-Sc alloys were carried out in galvanostatic mode using a cryolitic melt with a NaF/AlF3 molar ratio of 2.2 at 980 °C, using both synthetic and waste feeds. After elucidation of the cryolite electrolyte bath chemistry when adding Sc2O3, small-laboratory scale trials allowed for the demonstration of the process and the study and for the optimisation of the electrolysis parameters. Experiments in large-scale electrolysis cells allowed us to run long-term trials in continuous operation, while the on-line monitoring of the cell off-gases ensured the environmentally benign performance of the process. The aluminium product obtained contained 0.6–2.6 wt% Sc, depending on the current density applied. The material is suited to prepare Al-Sc master alloys for 3D printing powders.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6739
Author(s):  
Yanli Ma ◽  
Taili Chen ◽  
Lumin Gou ◽  
Wanwu Ding

The effects of CeO2 size on the microstructure and synthesis mechanism of Al-Ti-C alloy were investigated using a quenching experiment method. A scanning calorimetry experiment was used to investigate the synthesis mechanism of TiC, the aluminum melt in situ reaction was carried out to synthesize master alloys and its refining performance was estimated. The results show that the Al-Ti-C-Ce system is mainly composed of α-Al, Al3Ti, TiC and Ti2Al20Ce. The addition of CeO2 obviously speeds up the progress of the reaction, reduces the size of Al3Ti and TiC and lowers the formation temperature of second-phase particles. When the size of CeO2 is 2–4 μm, the promotion effect on the system is most obvious. The smaller the size of CeO2, the smaller the size of Al3Ti and TiC and the lower the formation temperature. Al-Ti-C-Ce master alloy has a significant refinement effect on commercial pure aluminum. When the CeO2 size is 2–4 μm, the grain size of commercial pure aluminum is refined to 227 μm by Al-Ti-C-Ce master alloy.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1353
Author(s):  
Sergey Savchenkov ◽  
Yaroslav Kosov ◽  
Vladimir Bazhin ◽  
Kirill Krylov ◽  
Rudolf Kawalla

Aluminum master alloys with rare earth metals are widely studied by many scientists around the world, but research on the production of Al-Er master alloys is still limited. The purpose of this work is to study the microstructure parameters of aluminum-erbium master alloys obtained by metallothermic reduction of salt mixtures containing erbium oxide or fluoride. The structural features were investigated by optical and scanning electron microscopy, and the dependence of the microhardness of the eutectic and solid solution fields of obtained master alloys on the content of erbium in the master alloy was determined. Studies have shown that master alloys obtained by metallothermic reduction of erbium compounds from chloride–fluoride melts are characterized by a uniform distribution of Al3Er intermetallic compounds in the volume of double eutectic [(Al) + Al3Er] and have a strong grain refinement effect. The analysis of the microstructure showed that the structure of the master alloys varies depending on the content of erbium. When the content of erbium in the master alloy is up to 6 wt.%, the eutectic structure is preserved. When the content of erbium in the master alloy is 8 wt.% or more, the structure becomes a solid solution with individual inclusions of various shapes and intermetallic compounds.


Author(s):  
Mustafa Babanlı, Arif Mammadov Mustafa Babanlı, Arif Mammadov ◽  
Tahir Jabbarov, Narmin Mammadli Tahir Jabbarov, Narmin Mammadli

The article discusses the innovative development of metallurgy in the Republic of Azerbaijan. Methods of production of energy-efficient and competitive metal products are analyzed to ensure the environmental safety of metallurgical processes to meet the needs of Azerbaijan and other CIS countries, as well as the world metal market. The importance of innovative metallurgical technologies, including nanotechnology, to meet the country's demand for metal products in the oil refining, petrochemical, chemical, automotive, mechanical engineering, utilities and other industries is emphasized. Proposed principles of creation of steel products of higher quality on the basis of new scientific approaches to the discovery and development of oil and gas fields and other valuable natural resources in the deeper layers of the Caspian Sea. This discusses the development of technologically efficient types of metal products with low metal capacity and high strength for the needs of the defense industry. Production of non-ferrous metals with the application of high-yield technologies based on the use of ore deposits of the country, creation of products from "master-alloys", rare and rare earth metals, etc. issues such as Keywords: metallurgy, innovative technologies, oil refining, petrochemistry, mechanical engineering, construction sector, ferrous and non-ferrous metals.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5783
Author(s):  
Sanbo Li ◽  
Chunfang Zhao ◽  
Fei Wang ◽  
Maoliang Hu ◽  
Zesheng Ji ◽  
...  

The refining performance of Al-Ti-C master alloys is substantially compromised by the inferior wettability between graphite and molten aluminum. In this paper, the Al-5Ti-0.25C master alloy was successfully prepared by reacting Ti machining chips, graphite, and molten aluminum. In order to determine a simple method of improving the wettability, the optimal preparation process and phase transformation of the Al-5Ti-0.25C master alloy were investigated using an optical microscope, X-ray diffractometer, and scanning electron microscope equipped with an energy dispersive spectrometer. The results show that the feeding method using a prefabricated block made from Ti chips, Al chips, and graphite effectively improves the wettability between graphite and molten aluminum and increases the recovery rate of graphite. When the reaction temperature is low (1223 K), the agglomeration of TiAl3 is caused. When the reaction temperature is high (1373 K), the morphology of TiAl3 changes from block-like to needle-like and increases its size. Further, a short reaction time (30 min) results in the incomplete dissolution of the Ti chips, while a long reaction time (90 min) causes the TiAl3 to transform into needle-like morphologies. The microstructural observation of undissolved Ti chips shows that TiAl3 and TiC are formed around it, which proves the transformation of Ti chips to TiAl3 and TiC. In addition, the enrichment of TiC and Al4C3 was observed in the vicinity of TiAl3, and a reaction model for the formation of TiC from the reaction of Al4C3 and TiAl3 was presented.


2021 ◽  
Vol 99 (3) ◽  
pp. 49-56
Author(s):  
M. M. Voron ◽  
◽  
M. A. Fon Pruss ◽  

The work is devoted to the Al-10Mo electron-beam prepared master-alloy modifying phases dissolution and assimilation features determination. It is shown that the obtained master-alloy is characterized by uniform distribution and high dispersion of molybdenum aluminide particles. When studying the process of dissolving the master-alloy in pure aluminum, it was determined that the time of modification of the melt more than 20 minutes at a temperature of 740 ± 10 ° C leads to the most complete destruction of the original intermetallics Al22Mo5 and Al17Mo4 and the formation of smaller and evenly distributed particles Al5Mo and Al12Mo with dimensions about 2 μm. As the molybdenum content decreases, the dispersion of the modifying phases and the uniformity of their distribution increase. Increasing the temperature and exposure time do not improve the assimilation of the modifier. The Al-10Mo master-alloy, obtained in the conditions of electron-beam casting technology, has a number of characteristics that allow to consider it as more efficient and cost-effective, compared to known analogues. This is due to the much higher concentration of molybdenum in the modifier (10% wt.), as well as fine dispersion and uniform distribution of the modifying phases. The nonequilibrium composition of aluminides inherent in the ligatures obtained under these conditions contributes to their significant grinding and refining after addition into aluminum melts. The stoichiometry of the phases from Al22Mo5 and Al17Mo4 changes to Al12Mo, which serve as crystallization centers and have a size of about 1 μm, dissolves and changes. The example of industrial casting alloy AlSi9Cu3 shows complete and effective assimilation of the master-alloy in a short time of 5 minutes at a temperature of 740 ± 10 ° C. Such indicators are more economic, in comparison with standard industrial ones, for which both higher temperature of melt preparing ant longer lifetime in liquid state after modification are necessary. Keywords: master-alloys, Al-Mo, modifications, aluminum alloys, AlSi9Cu3, resource saving.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1564
Author(s):  
Ilya Zhukov ◽  
Alexander Kozulin ◽  
Anton Khrustalyov ◽  
Dmitrii Tkachev ◽  
Vladimir Platov ◽  
...  

In the work, the possibility of obtaining strong welded joints of aluminum alloys modified with particles is demonstrated. For research, strengthened aluminum alloys of the Al-Mg-Mn system with the introduction of TiB2 particles were obtained. TiB2 particles in specially prepared Al-TiB master alloys obtained by self-propagating high-temperature synthesis were introduced ex situ into the melt according to an original technique using ultrasonic treatment. Plates from the studied cast alloys were butt-welded by one-sided welded joints of various depths. To obtain welded joints, the method of electron beam welding was used. Mechanical properties of the studied alloys and their welded joints under tension were studied. It was shown that the introduction of particles resulted in a change in the internal structure of the alloys, characterized by the formation of compact dendritic structures and a decrease in the average grain size from 155 to 95 µm. The change in the internal structure due to the introduction of particles led to an increase in the tensile strength of the obtained alloys from 163 to 204 MPa. It was found that the obtained joints have sufficient relative strength values. Relative strength values reach 0.9 of the nominal strength of materials already at the ratio of the welded joint depth to the thickness of the welded plates, equal to 0.6 for the initial alloy and in the range of 0.67–0.8 for strengthened alloys.


Sign in / Sign up

Export Citation Format

Share Document