Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system

2017 ◽  
Vol 72 ◽  
pp. 433-443 ◽  
Author(s):  
M. Enamul Hoque
Author(s):  
T. Dutta Roy ◽  
J. J. Stone ◽  
W. Sun ◽  
E. H. Cho ◽  
S. J. Lockett ◽  
...  

Scientific exploration into understanding and developing relationships between three-dimensional (3D) scaffolds prepared by rapid prototyping (RP) and cellular response has focused primarily on end results targeting osteoblast proliferation and differentiation. Here at the National Institute of Standards and Technology (NIST), we take a systems approach to developing relationships between material properties and quantitative biological responses. This study in particular focuses on the screening of parameters controlled by RP techniques and their ability to trigger signalling events leading to cell adhesion. This pioneering research in our group also characterizes the in vitro cell-material interactions of 2D films and 3D scaffolds. From there, one can postulate on contributory factors leading to cell migration, proliferation, and differentiation. In summary, we believe that the quantitative information from this fundamental investigation will enhance our knowledge of the interactions between cells and 3D material interfaces with respect to formation of focal adhesions. This work consists of two sections — the application of imaging techniques for 3D characterization of properties and culturing of osteoblasts for size and shape determination. This includes quantifying the number of focal adhesion sites. We are using 3D RP polycaprolactone (PCL) scaffolds as this surrogate model in which to compare 2D to 3D material performance and cell interactions. Using RP bio-manufacturing techniques to fabricate tissue engineering scaffolds allows for control of pore size, strut size, and layer thickness, therefore providing adjustable parameters to study which can potentially influence, or even dynamically modulate, cellular adhesion. Imaging results after culturing for 24 h showed differences in cell morphology and spreading relative to the different structures. The focal adhesion response also varied, indicating an apparent loss of organization in 3D scaffolds compared to 2D surfaces. See Results and Discussion for details.


2013 ◽  
Vol 750 ◽  
pp. 125-129 ◽  
Author(s):  
Yih Lin Cheng ◽  
Chin Jen Hsueh ◽  
Su Hai Hsiang

PCL is one of the popular biomaterials used in tissue engineering scaffolds, but it is seldom shaped by photo-polymerization. Layered manufacturing techniques, also known as Rapid Prototyping (RP) processes, provide a great opportunity to fabricate 3D scaffolds without problems such as limited control of pore-size and restricted geometric shapes in traditional methods. In our previous researches, the Biomedical Dynamic Masking Rapid Prototyping System was developed to photo-cure biodegradable materials through visible light. In this research, the Dynamic Masking RP System was modified to photo-polymerize cross-linkable PCL to form tissue engineering scaffolds. The cross-linkable PCL was synthesized by reacting PCL and acryloyl chloride, and dissolved in acetone mixing with photo-initiator. The tensile test and degradation test were performed on the cured PCL samples. Fabrication of single-layer pattern was first tested to understand the system’s capability and showed the errors were within 7%. Two types of scaffold design concepts were adopted—one took square, hexagon, or triangle as a basic element to create 2D grid patterns, and the interconnected pore were produced by offsetting the 2D pattern in alternating layers; the other took a double-sided trapezoid as a unit and arrayed it into tube shape with interconnected pore network. Various PCL porous tube scaffolds have been successfully fabricated in this study. In the future, they can be utilized to cell growth or mass cell duplication applications.


2007 ◽  
Vol 25 ◽  
pp. 379-383 ◽  
Author(s):  
Lin Liulan ◽  
Hu Qingxi ◽  
Huang Xianxu ◽  
Xu Gaochun

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Shanshan Han ◽  
Kexin Nie ◽  
Jingchao Li ◽  
Qingqing Sun ◽  
Xiaofeng Wang ◽  
...  

Electrospun nanofibers have been frequently used for tissue engineering due to their morphological similarities with the extracellular matrix (ECM) and tunable chemical and physical properties for regulating cell behaviors and functions. However, most of the existing electrospun nanofibers have a closely packed two-dimensional (2D) membrane with the intrinsic shortcomings of limited cellular infiltration, restricted nutrition diffusion, and unsatisfied thickness. Three-dimensional (3D) electrospun nanofiber-based scaffolds can provide stem cells with 3D microenvironments and biomimetic fibrous structures. Thus, they have been demonstrated to be good candidates for in vivo repair of different tissues. This review summarizes the recent developments in 3D electrospun nanofiber-based scaffolds (ENF-S) for tissue engineering. Three types of 3D ENF-S fabricated using different approaches classified into electrospun nanofiber 3D scaffolds, electrospun nanofiber/hydrogel composite 3D scaffolds, and electrospun nanofiber/porous matrix composite 3D scaffolds are discussed. New functions for these 3D ENF-S and properties, such as facilitated cell infiltration, 3D fibrous architecture, enhanced mechanical properties, and tunable degradability, meeting the requirements of tissue engineering scaffolds were discovered. The applications of 3D ENF-S in cartilage, bone, tendon, ligament, skeletal muscle, nerve, and cardiac tissue regeneration are then presented with a discussion of current challenges and future directions. Finally, we give summaries and future perspectives of 3D ENF-S in tissue engineering and clinical transformation.


Sign in / Sign up

Export Citation Format

Share Document