Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

2017 ◽  
Vol 71 ◽  
pp. 1145-1155 ◽  
Author(s):  
Shih-Feng Chou ◽  
Li-Jyuan Luo ◽  
Jui-Yang Lai ◽  
David Hui-Kang Ma
Author(s):  
Yuanduo Wang ◽  
Yongfang Qian ◽  
Zhen Zhang ◽  
Lihua Lyu ◽  
Ying Wang

1995 ◽  
Vol 73 (05) ◽  
pp. 850-856 ◽  
Author(s):  
F D Rubens ◽  
D W Perry ◽  
M W C Hatton ◽  
P D Bishop ◽  
M A Packham ◽  
...  

SummaryPlatelet accumulation on small- and medium-calibre vascular grafts plays a significant role in graft occlusion. We examined platelet accumulation on the surface of fibrin-coated polyethylene tubing (internal diameter 0.17 cm) during 10 min of flow (l0ml/min) at high wall shear rate (764 s-1). Washed platelets labelled with 51Cr were resuspended in Tyrode solution containing albumin, apyrase and red blood cells (hematocrit 40%). When the thrombin that was used to form the fibrin-coated surface was inactivated with FPRCH2C1 before perfusion of the tubes with the platelet:red blood cell suspension, the accumulation of platelets was 59,840 ± 27,960 platelets per mm2, whereas accumulation on fibrin with residual active thrombin was 316,750 ± 32,560 platelets per mm2 (n = 4). When the fibrin on the surface was cross-linked by including recombinant factor XIII (rFXIII) in the fibrinogen solution used to prepare the fibrin-coated surface, platelet accumulation, after thrombin neutralization, was reduced by the cross-linking from 46,974 ± 9702 to 36,818 ± 7964 platelets per mm2 (n = 12, p <0.01). Platelet accumulation on tubes coated with D-dimer was ten times less than on tubes coated with D-domain; this finding also supports the observation that cross-linking of fibrin with the formation of γ-γ dimers reduces platelet accumulation on the fibrin-coated surface. Thrombin-activated platelets themselves were shown to cross-link fibrin when they had adhered to it during perfusion, or in a static system in which thrombin was used to form clots from FXIII-free fibrinogen in the presence of platelets. Thus, cross-linking of fibrin by FXIII in plasma or from platelets probably decreases the reactivity of the fibrin-containing thrombi to platelets by altering the lysine residue at or near the platelet-binding site of each of the γ-chains of the fibrinogen which was converted into the fibrin of these thrombi.


1997 ◽  
Vol 77 (05) ◽  
pp. 0959-0963 ◽  
Author(s):  
Lisa Seale ◽  
Sarah Finney ◽  
Roy T Sawyer ◽  
Robert B Wallis

SummaryTridegin is a potent inhibitor of factor Xllla from the leech, Haementeria ghilianii, which inhibits protein cross-linking. It modifies plasmin-mediated fibrin degradation as shown by the absence of D-dimer and approximately halves the time for fibrinolysis. Plasma clots formed in the presence of Tridegin lyse more rapidly when either streptokinase, tissue plasminogen activator or hementin is added 2 h after clot formation. The effect of Tridegin is markedly increased if clots are formed from platelet-rich plasma. Platelet-rich plasma clots are lysed much more slowly by the fibrinolytic enzymes used and if Tridegin is present, the rate of lysis returns almost to that of platelet- free clots. These studies indicate the important role of platelets in conferring resistance to commonly used fibrinolytic enzymes and suggest that protein cross-linking is an important step in this effect. Moreover they indicate that Tridegin, a small polypeptide, may have potential as an adjunct to thrombolytic therapy.


2021 ◽  
pp. 009524432110061
Author(s):  
Bo Yang ◽  
Balakrishnan Nagarajan ◽  
Pierre Mertiny

Polymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications. Carbon-based fillers have risen in popularity to be used for the property enhancement of resulting polymer composites. The present investigation focuses on the effects of three carbon-based nano-fillers (graphene nano-platelets, carbon black, and graphene nano-scrolls) on the dimensional changes of polydimethylsiloxane composites due to swelling when immersed in certain organic solvents. For this study, a facile and expedient methodology comprised of optical measurements in conjunction with digital image analysis was developed as the primary experimental technique to quantify swelling dimensional changes of the prepared composites. Other experimental techniques assessed polymer cross-linking densities and elastic mechanical properties of the various materials. The study revealed that the addition of certain carbon-based nano-fillers increased the overall swelling of the composites. The extent of swelling further depended on the organic solvent in which the composites were immersed in. Experimental findings are contrasted with published models for swelling prediction, and the role of filler morphology on swelling behavior is discussed.


2013 ◽  
Vol 25 (18) ◽  
pp. 10499-10503 ◽  
Author(s):  
Ziya Ahmad Khan ◽  
Abdullah S. Al-Bogami
Keyword(s):  

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47838 ◽  
Author(s):  
Brittany L. T. Roberts ◽  
Kinaree Patel ◽  
Hilda H. Brown ◽  
David R. Borchelt

1994 ◽  
Vol 98 (34) ◽  
pp. 8352-8358 ◽  
Author(s):  
F. Gai ◽  
M. J. Fehr ◽  
J. W. Petrich

Sign in / Sign up

Export Citation Format

Share Document