Platelet Accumulation on Fibrin-coated Polyethylene: Role of Platelet Activation and Factor XIII

1995 ◽  
Vol 73 (05) ◽  
pp. 850-856 ◽  
Author(s):  
F D Rubens ◽  
D W Perry ◽  
M W C Hatton ◽  
P D Bishop ◽  
M A Packham ◽  
...  

SummaryPlatelet accumulation on small- and medium-calibre vascular grafts plays a significant role in graft occlusion. We examined platelet accumulation on the surface of fibrin-coated polyethylene tubing (internal diameter 0.17 cm) during 10 min of flow (l0ml/min) at high wall shear rate (764 s-1). Washed platelets labelled with 51Cr were resuspended in Tyrode solution containing albumin, apyrase and red blood cells (hematocrit 40%). When the thrombin that was used to form the fibrin-coated surface was inactivated with FPRCH2C1 before perfusion of the tubes with the platelet:red blood cell suspension, the accumulation of platelets was 59,840 ± 27,960 platelets per mm2, whereas accumulation on fibrin with residual active thrombin was 316,750 ± 32,560 platelets per mm2 (n = 4). When the fibrin on the surface was cross-linked by including recombinant factor XIII (rFXIII) in the fibrinogen solution used to prepare the fibrin-coated surface, platelet accumulation, after thrombin neutralization, was reduced by the cross-linking from 46,974 ± 9702 to 36,818 ± 7964 platelets per mm2 (n = 12, p <0.01). Platelet accumulation on tubes coated with D-dimer was ten times less than on tubes coated with D-domain; this finding also supports the observation that cross-linking of fibrin with the formation of γ-γ dimers reduces platelet accumulation on the fibrin-coated surface. Thrombin-activated platelets themselves were shown to cross-link fibrin when they had adhered to it during perfusion, or in a static system in which thrombin was used to form clots from FXIII-free fibrinogen in the presence of platelets. Thus, cross-linking of fibrin by FXIII in plasma or from platelets probably decreases the reactivity of the fibrin-containing thrombi to platelets by altering the lysine residue at or near the platelet-binding site of each of the γ-chains of the fibrinogen which was converted into the fibrin of these thrombi.

2012 ◽  
Vol 124 (3) ◽  
pp. 123-137 ◽  
Author(s):  
Victoria R. Richardson ◽  
Paul Cordell ◽  
Kristina F. Standeven ◽  
Angela M. Carter

FXIII (Factor XIII) is a Ca2+-dependent enzyme which forms covalent ϵ-(γ-glutamyl)lysine cross-links between the γ-carboxy-amine group of a glutamine residue and the ϵ-amino group of a lysine residue. FXIII was originally identified as a protein involved in fibrin clot stabilization; however, additional extracellular and intracellular roles for FXIII have been identified which influence thrombus resolution and tissue repair. The present review discusses the substrates of FXIIIa (activated FXIII) involved in thrombosis and wound healing with a particular focus on: (i) the influence of plasma FXIIIa on the formation of stable fibrin clots able to withstand mechanical and enzymatic breakdown through fibrin–fibrin cross-linking and cross-linking of fibrinolysis inhibitors, in particular α2-antiplasmin; (ii) the role of intracellular FXIIIa in clot retraction through cross-linking of platelet cytoskeleton proteins, including actin, myosin, filamin and vinculin; (iii) the role of intracellular FXIIIa in cross-linking the cytoplasmic tails of monocyte AT1Rs (angiotensin type 1 receptors) and potential effects on the development of atherosclerosis; and (iv) the role of FXIIIa on matrix deposition and tissue repair, including cross-linking of extracellular matrix proteins, such as fibronectin, collagen and von Willebrand factor, and the effects on matrix deposition and cell–matrix interactions. The review highlights the central role of FXIIIa in the regulation of thrombus stability, thrombus regulation, cell–matrix interactions and wound healing, which is supported by observations in FXIII-deficient humans and animals.


2010 ◽  
Vol 8 (9) ◽  
pp. 2017-2024 ◽  
Author(s):  
N. J. MUTCH ◽  
J. S. KOIKKALAINEN ◽  
S. R. FRASER ◽  
K. M. DUTHIE ◽  
M. GRIFFIN ◽  
...  
Keyword(s):  

1981 ◽  
Author(s):  
D Kahn ◽  
N Crawford ◽  
I Cohen

Transglutaminases are ubiquitous in cells and require calcium for their activation. The factor XIII zymogen, present in plasma and in the platelet cytosol, requires for its activation both a limited proteolytic activity on the catalytic subunit,“a”, and, in the use of the plasma enzyme, calcium for dissociating subunit“a” from the carrier subunit“b”. Calcium is also necessary for exposing the reactive sulfhydryl group. We have recently suggested a role for the platelet factor XIII in the generation of calcium-dependent cross-linking processes in platelets. Since calmodulin is present in considerable amounts in the platelet cytosol and is known to regulate the activity of various calcium-dependent enzymes and cellular reactions, we have investigated its possible role in factor XIII activation. Since the“a” subunit of platelet factor XIII is identical to its plasma counterpart, the more easily purified plasma zymogen was used. The effect of calmodulin on the two calcium-dependent steps of factor XIII activation was investigated following thrombin-stimulated hydrolysis of the“a” subunit. Platelet calmodulin was found to enhance by at least 3 fold the calcium-dependent unmasking of the reactive sulfhydryl groups which were titrated with 14C-iodoacetamide. Calmodulin also enhanced by at least 4 fold the calcium-dependent dissociation of the b subunit from its complex with the thrombin-hydrolyzed“a” subunit. The calmodulin mediation of the calcium-dependent steps of factor XIII activation may be important for regulating the factor XIII-dependent cross-linking reactions in platelets and is reminiscent of the calcium-related regulatory role of fibrinogen on factor XIII activation which could prevail in plasma. An investigation of the possible role of calmodulin on other tissue transglutaminases is warranted.


1993 ◽  
Vol 70 (03) ◽  
pp. 438-442 ◽  
Author(s):  
B Grøn ◽  
C Filion-Myklebust ◽  
S Bjørnsen ◽  
P Haidaris ◽  
F Brosstad

SummaryFibrinogen and fibrin related chains in reduced human plasma as well as the bonds interlinking partially cross-linked fibrin from plasma clots have been studied by means of 1D- and 2D electrophoresis and Western blotting. Immunovisualization of reduced plasma or partially cross-linked fibrin with monoclonal antibodies specific for the α-chains or the γ-chains have shown that several bands represent material belonging to both chains. In order to decide whether these bands constitute αγ-chain hybrids or superimposed α- and γ-chain dimers, the cross-linked material was separated according to both isoelectric point (pI) and molecular weight (MW) using Pharmacia’s Multiphor II system. Western blotting of the second dimension gels revealed that partially cross-linked fibrin contains αsγt-chain hybrids and γ- polymers, in addition to the well-known γ-dimers and α-polymers. The main αsγt-chain hybrid has a pI between that of the α- and the γ-chains, a MW of about 200 kDa and contains Aα-chains with intact fibrinopeptide A (FPA). It was also observed that soluble fibrinogen/fibrin complexes as well as partially cross-linked fibrin contain degraded α-dimers with MWs close to the γ-dimers. These findings demonstrate that factor XIII-catalyzed cross-linking of fibrin is a more complex phenomenon than earlier recognized.


1997 ◽  
Vol 77 (05) ◽  
pp. 0959-0963 ◽  
Author(s):  
Lisa Seale ◽  
Sarah Finney ◽  
Roy T Sawyer ◽  
Robert B Wallis

SummaryTridegin is a potent inhibitor of factor Xllla from the leech, Haementeria ghilianii, which inhibits protein cross-linking. It modifies plasmin-mediated fibrin degradation as shown by the absence of D-dimer and approximately halves the time for fibrinolysis. Plasma clots formed in the presence of Tridegin lyse more rapidly when either streptokinase, tissue plasminogen activator or hementin is added 2 h after clot formation. The effect of Tridegin is markedly increased if clots are formed from platelet-rich plasma. Platelet-rich plasma clots are lysed much more slowly by the fibrinolytic enzymes used and if Tridegin is present, the rate of lysis returns almost to that of platelet- free clots. These studies indicate the important role of platelets in conferring resistance to commonly used fibrinolytic enzymes and suggest that protein cross-linking is an important step in this effect. Moreover they indicate that Tridegin, a small polypeptide, may have potential as an adjunct to thrombolytic therapy.


2019 ◽  
Author(s):  
Estela Val Jordan ◽  
Agustín Nebra Puertas ◽  
Juan Casado Pellejero ◽  
Maria Dolores Vicente Gordo ◽  
Concepción Revilla López ◽  
...  

2021 ◽  
pp. 009524432110061
Author(s):  
Bo Yang ◽  
Balakrishnan Nagarajan ◽  
Pierre Mertiny

Polymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications. Carbon-based fillers have risen in popularity to be used for the property enhancement of resulting polymer composites. The present investigation focuses on the effects of three carbon-based nano-fillers (graphene nano-platelets, carbon black, and graphene nano-scrolls) on the dimensional changes of polydimethylsiloxane composites due to swelling when immersed in certain organic solvents. For this study, a facile and expedient methodology comprised of optical measurements in conjunction with digital image analysis was developed as the primary experimental technique to quantify swelling dimensional changes of the prepared composites. Other experimental techniques assessed polymer cross-linking densities and elastic mechanical properties of the various materials. The study revealed that the addition of certain carbon-based nano-fillers increased the overall swelling of the composites. The extent of swelling further depended on the organic solvent in which the composites were immersed in. Experimental findings are contrasted with published models for swelling prediction, and the role of filler morphology on swelling behavior is discussed.


2003 ◽  
Vol 89 (05) ◽  
pp. 943-944 ◽  
Author(s):  
Patricia DiBello ◽  
John Shainoff
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document