Electrospun silk nanofibers improve differentiation potential of human induced pluripotent stem cells to insulin producing cells

2020 ◽  
Vol 108 ◽  
pp. 110398 ◽  
Author(s):  
Seyed Ehsan Enderami ◽  
Seyedeh Fatemeh Ahmadi ◽  
Reyhaneh Nassiri Mansour ◽  
Saeid Abediankenari ◽  
Hossein Ranjbaran ◽  
...  
2018 ◽  
Vol 46 (sup3) ◽  
pp. S734-S739 ◽  
Author(s):  
Reyhaneh Nassiri Mansour ◽  
Fatemeh Soleimanifar ◽  
Mohamad Foad Abazari ◽  
Sepehr Torabinejad ◽  
Abdolreza Ardeshirylajimi ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179353 ◽  
Author(s):  
Haikun Liu ◽  
Dongsheng Guo ◽  
Aynisahan Ruzi ◽  
Yan Chen ◽  
Tingcai Pan ◽  
...  

2018 ◽  
Vol 46 (sup1) ◽  
pp. 733-739 ◽  
Author(s):  
Reyhaneh Nassiri Mansour ◽  
Ghasem Barati ◽  
Masoud Soleimani ◽  
Pegah Ghoraeian ◽  
Maryam Nouri Aleagha ◽  
...  

2013 ◽  
Vol 25 (1) ◽  
pp. 289
Author(s):  
O. J. Koo ◽  
H. S. Kwon ◽  
D. K. Kwon ◽  
K. S. Kang ◽  
B. C. Lee ◽  
...  

Stem cells in large animals are an excellent model for cell therapy research and fine resources for producing transgenic animals. However, there are only few reports of stem cells in large animals because of technical differences between species. In this report, we successfully generate bovine induced pluripotent stem cells (iPSC) using 4 human reprogramming factors (Oct4, Sox2, Klf4, and c-myc) under control of PiggyBac transposition vector. Fibroblasts derived from bovine fetuses were transfected using FugeneHD agent. After 21 days, colony-shaped structures on the culture plates were mechanically detached and then seeded on a mouse embryonic fibroblast (MEF) feeder layer pretreated with mitomycin C. The culture medium was DMEM/F12 supplemented with 20% serum replacement, 5 ng mL–1 basic fibroblast growth factor (bFGF), 0.1 mM β-mercaptoethanol, 1% NEAA, and 1% penicillin-streptomycin antibiotics. The iPSC colonies showed alkaline phosphatase activity and expressed several pluripotency markers (Oct4, Sox2, SSEA1, and SSEA4). To confirm differentiation potential, the iPSC were cultured as embryoid bodies and then plated again. βIII-tubulin (ectoderm) and GFAP or α-SMA (mesoderm) were well expressed on the attached cells. The results revealed that the bovine fibroblasts were well inducted to iPSC that had potential of multilineage differentiation. We hope this technology contributes to improving transgenic cattle production. This study was financially supported by IPET (grant # 109023-05-3-CG000, 111078-03-1-CG000) and the BK21 program for Veterinary Science.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 731-731
Author(s):  
Kyung-Dal Choi ◽  
Junying Yu ◽  
Kimberly Smuga-Otto ◽  
Jessica Dias ◽  
Giorgia Salvagiotto ◽  
...  

Abstract Induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity for modeling of human diseases in vitro as well as for developing novel approaches for regenerative therapy based on immunologically compatible cells. In the present study, we employed an OP9 differentiation system to characterize the hematopoietic differentiation potential of seven human iPSC lines obtained from human fetal, neonatal, and adult fibroblasts through reprogramming with POU5F1, SOX2, NANOG, and LIN28 and compared it with the differentiation potential of five human embryonic stem cell lines (hESC; H1, H7, H9, H13, and H14). Similar to hESCs, all iPSCs in coculture with OP9 generated all types of colony forming cells (CFCs) as well as CD34+ cells that can be separated into distinct subsets based on differential expression of CD43 and CD31. CD34+CD31+CD43− cells obtained from all iPSCs expressed molecules present on endothelial cells and readily formed a monolayer when placed in endothelial conditions, while hematopoietic CFC potential was restricted to CD43+ cells. iPSC-derived CD43+ cells could be separated into three major subsets based on differential expression of CD235a/CD41a and CD45: CD235a+CD41a+/− (erythro-megakaryocytic progenitors), and lin-CD34+CD43+CD45− (multipotent), and lin-CD34+CD43+CD45+ (myeloid-skewed) primitive hematopoietic cells. Both subsets of primitive hematopoietic cells expressed genes associated with myeloid and lymphoid development, although myeloid genes were upregulated in CD45+ cells, which are skewed toward myeloid differentiation. Cytogenetic analysis demonstrated that iPSCs and derived from them CD43+ cells maintained normal karyotype. In addition short tandem repeat analysis of CFCs generated from IMR90-1 cells has been performed to confirm that blood cells are in fact derived from reprogrammed IMR90 cells, and not from contaminating hESCs. While we observed some variations in the efficiency of hematopoietic differentiation between different iPSCs, the pattern of differentiation was very similar in all seven tested iPSC and five hESC lines. Using different cytokine combinations and culture conditions we were able to expand iPSC-derived myeloid progenitors and induce their differentiation toward red blood cells, neutrophils, eosinophils, macrophages, ostoeclasts, dendritic and Langerhans cells. Although several issues remain to be resolved before iPSC-derived blood cells can be administered to humans for therapeutic purposes, patient-specific iPSCs can already be used for characterization of mechanisms of blood diseases and to identify molecules that can correct affected genetic networks.


2015 ◽  
Vol 52 (6) ◽  
pp. 1025-1035 ◽  
Author(s):  
Silvia Pellegrini ◽  
Federica Ungaro ◽  
Alessia Mercalli ◽  
Raffaella Melzi ◽  
Guido Sebastiani ◽  
...  

Neuroreport ◽  
2011 ◽  
Vol 22 (14) ◽  
pp. 689-695 ◽  
Author(s):  
Xiao-Li Yao ◽  
Qiang Liu ◽  
Cheng-Hui Ye ◽  
Zhi-Ping Li ◽  
Xi-Lin Lu ◽  
...  

2018 ◽  
Author(s):  
Carolin Göbel ◽  
Roman Goetzke ◽  
Thomas Eggermann ◽  
Wolfgang Wagner

AbstractReplicative senescence hampers application of mesenchymal stromal cells (MSCs) because it limits culture expansion, impairs differentiation potential, and hinders reliable standardization of cell products. MSCs can be rejuvenated by reprogramming into induced pluripotent stem cells (iPSCs), which is associated with complete erasure of age- and senescence-associated DNA methylation (DNAm) patterns. However, this process is also associated with erasure of cell-type and tissue-specific epigenetic characteristics that are not recapitulated upon re-differentiation towards MSCs. In this study, we therefore followed the hypothesis that overexpression of pluripotency factors under culture conditions that do not allow full reprogramming might reset senescence-associated changes without entering a pluripotent state. MSCs were transfected with episomal plasmids and either successfully reprogrammed into iPSCs or cultured in different media with continuous passaging every week. Overexpression of pluripotency factors without reprogramming did neither prolong culture expansion nor ameliorate molecular and epigenetic hallmarks of senescence. Notably, transfection resulted in immortalization of one cell preparation with gain of large parts of the long arm of chromosome 1. Taken together, premature termination of reprogramming does not result in rejuvenation of MSCs and harbours the risk of transformation. This approach is therefore not suitable to rejuvenate cells for cellular therapy.


Sign in / Sign up

Export Citation Format

Share Document