scholarly journals Experimental Study of Cutting Forces in Ball End Milling of Al2014-T6 Using Response Surface Methodology

2014 ◽  
Vol 6 ◽  
pp. 612-622 ◽  
Author(s):  
Mithilesh Kumar Dikshit ◽  
Asit Baran Puri ◽  
Atanu Maity
2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2001 ◽  
Author(s):  
Richard Y. Chiou ◽  
Bing Zhao

Abstract This paper presents an analytical convolution model of dynamic cutting forces in ball end milling of 3-D plane surfaces. The model takes into account the instantaneous slope on a sculptured surface to establish the chip geometry in cutting force calculation algorithm. A three-dimensional model of cutting forces in ball end milling is presented in terms of material properties, cutting parameters, machining configuration, and tool/work geometry. Based on the relationship of the local cutting force, chip load and engaged boundary, the total cutting force model is established via the angle domain convolution integration of the local forces in the feed, cross feed, axial direction, and inclination angle. The convolution integral leads to a periodic function of cutting forces in the angle domain and an explicit expression of the dynamic cutting force components in the frequency domain. Following the theoretical analysis, experimental study is discussed to illustrate the implementation procedure for force identification, and frequency domain data are presented to verify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document