scholarly journals Analysis of Cutting Forces and Optimization of Cutting Parameters in High Speed Ball-end Milling Using Response Surface Methodology and Genetic Algorithm

2014 ◽  
Vol 5 ◽  
pp. 1623-1632 ◽  
Author(s):  
Mithilesh Kumar Dikshit ◽  
Asit Baran Puri ◽  
Atanu Maity ◽  
Amit Jyoti Banerjee
2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2012 ◽  
Vol 500 ◽  
pp. 134-139
Author(s):  
Shi Guo Han ◽  
Jun Zhao ◽  
Xiao Xiao Chen ◽  
Yue En Li ◽  
Qing Yuan Cao ◽  
...  

In this paper, the effects of the variational combinations of cutter inclination angle in feed direction and the feed per tooth on the machined surface hardness were mainly concerned. The cutting forces transformed from the measured cutting forces in OXYZ and the SEM microstructures of the surface layer were analyzed to explore the generation condition of the hardness. Variations of the surface hardness are not apparent with the increment of feed per tooth with the identical other cutting parameters. Inclination angles in feed direction of approximately ranging from 10° to 15° and from 25° to 30°, which correspond to high surface hardness, are suggested to be applied in cutting process when high abrasive resistance is expected. While values of inclination angle approximately equal to 0° and 45° are prior to be chosen when high shock resistance performance is firstly expected. Optimization of the cutting parameters, which could offer guidance to the machining of sculptured surface concerning cutter inclination angle, was presented.


Sign in / Sign up

Export Citation Format

Share Document