scholarly journals Iron metal anode for aqueous rechargeable batteries

2021 ◽  
Vol 11 ◽  
pp. 100156
Author(s):  
Z. He ◽  
F. Xiong ◽  
S. Tan ◽  
X. Yao ◽  
C. Zhang ◽  
...  
Author(s):  
Ieuan Seymour ◽  
Ainara Aguadero

All-solid-state batteries containing a solid electrolyte and a lithium (Li) or sodium (Na) metal anode are a promising solution to simultaneously increase the energy density and safety of rechargeable batteries....


2017 ◽  
Vol 114 (18) ◽  
pp. 4613-4618 ◽  
Author(s):  
Dingchang Lin ◽  
Jie Zhao ◽  
Jie Sun ◽  
Hongbin Yao ◽  
Yayuan Liu ◽  
...  

Rechargeable batteries based on lithium (Li) metal chemistry are attractive for next-generation electrochemical energy storage. Nevertheless, excessive dendrite growth, infinite relative dimension change, severe side reactions, and limited power output severely impede their practical applications. Although exciting progress has been made to solve parts of the above issues, a versatile solution is still absent. Here, a Li-ion conductive framework was developed as a stable “host” and efficient surface protection to address the multifaceted problems, which is a significant step forward compared with previous host concepts. This was fulfilled by reacting overstoichiometry of Li with SiO. The as-formed LixSi–Li2O matrix would not only enable constant electrode-level volume, but also protect the embedded Li from direct exposure to electrolyte. Because uniform Li nucleation and deposition can be fulfilled owing to the high-density active Li domains, the as-obtained nanocomposite electrode exhibits low polarization, stable cycling, and high-power output (up to 10 mA/cm2) even in carbonate electrolytes. The Li–S prototype cells further exhibited highly improved capacity retention under high-power operation (∼600 mAh/g at 6.69 mA/cm2). The all-around improvement on electrochemical performance sheds light on the effectiveness of the design principle for developing safe and stable Li metal anodes.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 322
Author(s):  
Ryo Shomura ◽  
Ryota Tamate ◽  
Shoichi Matsuda

Lithium metal anode is regarded as the ultimate negative electrode material due to its high theoretical capacity and low electrochemical potential. However, the significantly high reactivity of Li metal limits the practical application of Li metal batteries. To improve the stability of the interface between Li metal and an electrolyte, a facile and scalable blade coating method was used to cover the commercial polyethylene membrane separator with an inorganic/organic composite solid electrolyte layer containing lithium-ion-conducting ceramic fillers. The coated separator suppressed the interfacial resistance between the Li metal and the electrolyte and consequently prolonged the cycling stability of deposition/dissolution processes in Li/Li symmetric cells. Furthermore, the effect of the coating layer on the discharge/charge cycling performance of lithium-oxygen batteries was investigated.


2019 ◽  
Vol 5 (2) ◽  
pp. eaau7728 ◽  
Author(s):  
Xiang Chen ◽  
Xiao-Ru Chen ◽  
Ting-Zheng Hou ◽  
Bo-Quan Li ◽  
Xin-Bing Cheng ◽  
...  

The uncontrollable growth of lithium (Li) dendrites seriously impedes practical applications of Li metal batteries. Various lithiophilic conductive frameworks, especially carbon hosts, are used to guide uniform Li nucleation and thus deliver a dendrite-free composite anode. However, the lithiophilic nature of these carbon hosts is poorly understood. Herein, the lithiophilicity chemistry of heteroatom-doped carbon is investigated through both first principles calculations and experimental verifications to guide uniform Li nucleation. The electronegativity, local dipole, and charge transfer are proposed to reveal the lithiophilicity of doping sites. Li bond chemistry further deepens the understanding of lithiophilicity. The O-doped and O/B–co-doped carbons exhibit the best lithiophilicity among single-doped and co-doped carbons, respectively. The excellent lithiophilicity achieved by O-doping carbon is further validated by Li nucleation overpotential measurement. This work uncovers the lithiophilicity chemistry of heteroatom-doped carbons and affords a mechanistic guidance to Li metal anode frameworks for safe rechargeable batteries.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2025
Author(s):  
Ki Yoon Bae ◽  
Sung Ho Cho ◽  
Byung Hyuk Kim ◽  
Byung Dae Son ◽  
Woo Young Yoon

We developed a novel battery system consisting of a hybrid (LiCoO2 + LiV3O8) cathode in a cell with a hybrid (graphite + Li-metal) anode and compared it with currently used systems. The hybrid cathode was synthesized using various ratios of LiCoO2:LiV3O8, where the 80:20 wt% ratio yielded the best electrochemical performance. The graphite and Li-metal hybrid anode, the composition of which was calculated based on the amount of non-lithiated cathode material (LiV3O8), was used to synthesize a full cell. With the addition of LiV3O8, the discharge capacity of the LiCoO2 + LiV3O8 hybrid cathode increased from 142.03 to 182.88 mA h g−1 (a 28.76% improvement). The energy density of this cathode also increased significantly, from 545.96 to 629.24 W h kg−1 (a 15.21% improvement). The LiCoO2 + LiV3O8 hybrid cathode was characterized through X-ray diffraction analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Its electrochemical performance was analyzed using a battery-testing system and electrochemical impedance spectroscopy. We expect that optimized synthesis conditions will enable the development of a novel battery system with an increase in energy density and discharge capacity.


2016 ◽  
Vol 113 (47) ◽  
pp. 13313-13317 ◽  
Author(s):  
Yutao Li ◽  
Weidong Zhou ◽  
Xi Chen ◽  
Xujie Lü ◽  
Zhiming Cui ◽  
...  

A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)3 with rhombohedral structure at room temperature that has a bulk Li-ion conductivity σLi = 2 × 10−4 S⋅cm−1 at 25 °C, a high electrochemical stability up to 5.5 V versus Li+/Li, and a small interfacial resistance for Li+ transfer. It reacts with a metallic lithium anode to form a Li+-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)3 electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life.


2019 ◽  
Vol 131 (43) ◽  
pp. 15379-15382 ◽  
Author(s):  
Chong Yan ◽  
Rui Xu ◽  
Jin‐Lei Qin ◽  
Hong Yuan ◽  
Ye Xiao ◽  
...  

2019 ◽  
Vol 58 (43) ◽  
pp. 15235-15238 ◽  
Author(s):  
Chong Yan ◽  
Rui Xu ◽  
Jin‐Lei Qin ◽  
Hong Yuan ◽  
Ye Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document