Numerical simulation of hypersonic reentry flow Field with gas-phase and surface chemistry models

2020 ◽  
Vol 22 ◽  
pp. 100773
Author(s):  
Zongshu Mei ◽  
Chengying Shi ◽  
Xueling Fan ◽  
Xiaobin Wang
2005 ◽  
Vol 15 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Yaodong Wei ◽  
Jianfei Song ◽  
Mingxian Shi ◽  
Hu Zhang

2011 ◽  
Vol 291-294 ◽  
pp. 2857-2860
Author(s):  
Yun Wang ◽  
Zhuo Xiong Zeng

The rotating ramjet is a new conceptive engine based on the ram-compressed technology rely on high-speed rotating rotor, the engine’s core component is an internal combustion rotor, which has the functions of compressing air, combusting and doing work by exhausting. In order to predict the combusting flow field in Ram-compressed Rotor chamber, the model of Ram-compressed Rotor was set up. The fuel composition was defined in software prePDF. Realizable was used for the gas phase turbulence. Fuel particles phase makes use of stochastic tracking model. The Structure characteristics of the combusting flow field and temperature field were found out by numerical simulation. The numerical simulation results show that the combusting flow field in the Ram-compressed Rotor Chamber has simple inlet and outlet is well, and offer the references to the design of combustion chamber especially the contour design of the scramjet nozzle.


2020 ◽  
Vol 1670 ◽  
pp. 012030
Author(s):  
Shiming Chen ◽  
GuichunYang ◽  
Shuang Zhou ◽  
Wenzhuo Chen ◽  
Jinfa Guan ◽  
...  

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Sign in / Sign up

Export Citation Format

Share Document