On the Cauchy type problem for systems of functional differential equations

2007 ◽  
Vol 67 (12) ◽  
pp. 3240-3260 ◽  
Author(s):  
Jiří Šremr
2021 ◽  
Vol 104 (4) ◽  
pp. 130-141
Author(s):  
S. Shaimardan ◽  
◽  
N.S. Tokmagambetov ◽  
◽  

This paper is devoted to explicit and numerical solutions to linear fractional q-difference equations and the Cauchy type problem associated with the Riemann-Liouville fractional q-derivative in q-calculus. The approaches based on the reduction to Volterra q-integral equations, on compositional relations, and on operational calculus are presented to give explicit solutions to linear q-difference equations. For simplicity, we give results involving fractional q-difference equations of real order a > 0 and given real numbers in q-calculus. Numerical treatment of fractional q-difference equations is also investigated. Finally, some examples are provided to illustrate our main results in each subsection.


2021 ◽  
Vol 5 (3) ◽  
pp. 109
Author(s):  
Batirkhan Kh. Turmetov ◽  
Kairat I. Usmanov ◽  
Kulzina Zh. Nazarova

The methods for constructing solutions to integro-differential equations of the Volterra type are considered. The equations are related to fractional conformable derivatives. Explicit solutions of homogeneous and inhomogeneous equations are constructed, and a Cauchy-type problem is studied. It should be noted that the considered method is based on the construction of normalized systems of functions with respect to a differential operator of fractional order.


2007 ◽  
Vol 12 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Anatoly Kilbas ◽  
Anatoly Titioura

The paper is devoted to the study of the Cauchy‐type problem for the nonlinear differential equation of fractional order 0 < α < 1: containing the Marchaud-Hadamard-type fractional derivative (Dα 0+, μ y)(x), on the half-axis R+ = (0, +oo) in the space Xp,α c,0 (R+) defined for α > 0 by where Xp c, 0 (R+) is the subspace of Xp c (R+) of functions g Xp c (R + ) with compact support on infinity: g(x) = 0 for large enough x > R. The equivalence of this problem and of the nonlinear Volterra integral equation is established. The existence and uniqueness of the solution y(x) of the above Cauchy‐type problem is proved by using the Banach fixed point theorem. Solution in closed form of the above problem for the linear differential equation with f[x, y(x)] = λy(x) + f(x) is constructed. The corresponding assertions for the differential equations with the Marchaud‐Hadamard fractional derivative (Dα 0+ y)(x) are presented. Examples are given.


Author(s):  
Batirkhan kh. Turmetov ◽  
Kairat I. Usmanov ◽  
Kulzina Zh. Nazarova

The methods for constructing solutions to integro-differential equations of the Volterra type are considered. The equations are related to fractional conformable derivatives. Explicit solutions of homogeneous and inhomogeneous equations are constructed and a Cauchy-type problem is studied. It should be noted that the considered method is based on the construction of normalized systems of functions with respect to a differential operator of fractional order.


2007 ◽  
Vol 7 (1) ◽  
pp. 68-82
Author(s):  
K. Kropielnicka

AbstractA general class of implicit difference methods for nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type is constructed. Convergence results are proved by means of consistency and stability arguments. It is assumed that given functions satisfy nonlinear estimates of Perron type with respect to functional variables. Differential equations with deviated variables and differential integral problems can be obtained from a general model by specializing given operators. The results are illustrated by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document