Algebraic multiplicity and topological degree for Fredholm operators

2020 ◽  
Vol 201 ◽  
pp. 112019
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro
Author(s):  
Carlos Mora-Corral

Given a smooth function 𝔏 of a real or complex variable and taking its values in the class of Fredholm operators of index zero in a Banach space, there are some available definitions in the literature of algebraic multiplicity of the family 𝔏 at a point x0 of the parameter at which the operator 𝔏(x0) becomes non-invertible. The purpose of this paper is to suggest an axiomatic for the multiplicity and to prove that the algebraic multiplicity is uniquely determined by a few of its properties, independently of its construction.


Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

AbstractIn this paper, we prove an analogue of the uniqueness theorems of Führer [15] and Amann and Weiss [1] to cover the degree of Fredholm operators of index zero constructed by Fitzpatrick, Pejsachowicz and Rabier [13], whose range of applicability is substantially wider than for the most classical degrees of Brouwer [5] and Leray–Schauder [22]. A crucial step towards the axiomatization of this degree is provided by the generalized algebraic multiplicity of Esquinas and López-Gómez [8, 9, 25], $$\chi $$ χ , and the axiomatization theorem of Mora-Corral [28, 32]. The latest result facilitates the axiomatization of the parity of Fitzpatrick and Pejsachowicz [12], $$\sigma (\cdot ,[a,b])$$ σ ( · , [ a , b ] ) , which provides the key step for establishing the uniqueness of the degree for Fredholm maps.


2001 ◽  
Vol 25 (4) ◽  
pp. 273-287 ◽  
Author(s):  
A. Addou ◽  
B. Mermri

We are interested in constructing a topological degree for operators of the formF=L+A+S, whereLis a linear densely defined maximal monotone map,Ais a bounded maximal monotone operators, andSis a bounded demicontinuous map of class(S+)with respect to the domain ofL. By means of this topological degree we prove an existence result that will be applied to give a new formulation of a parabolic variational inequality problem.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


1988 ◽  
Vol 198 (3) ◽  
pp. 431-434 ◽  
Author(s):  
M�che�l � Searc�id

2001 ◽  
Vol 131 (5) ◽  
pp. 1003-1022 ◽  
Author(s):  
C. Bivià-Ausina ◽  
J. J. Nuño-Ballesteros

We define the deformation multiplicity of a map germ f: (Cn, 0) → (Cp, 0) with respect to a Boardman symbol i of codimension less than or equal to n and establish a geometrical interpretation of this number in terms of the set of Σi points that appear in a generic deformation of f. Moreover, this number is equal to the algebraic multiplicity of f with respect to i when the corresponding associated ring is Cohen-Macaulay. Finally, we study how algebraic multiplicity behaves with weighted homogeneous map germs.


Sign in / Sign up

Export Citation Format

Share Document