A new efficient design for random access memory based on quantum dot cellular automata nanotechnology

2019 ◽  
Vol 21 ◽  
pp. 100252 ◽  
Author(s):  
Azath Mubarakali ◽  
Jayabrabu Ramakrishnan ◽  
Dinesh Mavaluru ◽  
Amria Elsir ◽  
Omer Elsier ◽  
...  
2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040010
Author(s):  
R. H. Gudlavalleti ◽  
B. Saman ◽  
R. Mays ◽  
Evan Heller ◽  
J. Chandy ◽  
...  

This paper presents the peripheral circuitry for a multivalued static random-access memory (SRAM) based on 2-bit CMOS cross-coupled inverters using spatial wavefunction switched (SWS) field effect transistors (SWSFETs). The novel feature is a two quantum well/quantum dot channel n-SWSFET access transistor. The reduction in area with four-bit storage-per-cell increases the memory density and efficiency of the SRAM array. The SWSFET has vertically stacked two-quantum well/quantum dot channels between the source and drain regions. The upper or lower quantum charge locations in the channel region is based on the input gate voltage. The analog behavioral modeling (ABM) of the SWSFET device is done using conventional BSIM 3V3 device parameters in 90 nm technology. The Cadence circuit simulations for the proposed memory cell and addressing/peripheral circuitry are presented.


Optik ◽  
2016 ◽  
Vol 127 (15) ◽  
pp. 6172-6182 ◽  
Author(s):  
Trailokya Nath Sasamal ◽  
Ashutosh Kumar Singh ◽  
Anand Mohan

2018 ◽  
Vol 57 (11) ◽  
pp. 3419-3428 ◽  
Author(s):  
Ali Newaz Bahar ◽  
Radhouane Laajimi ◽  
Md. Abdullah-Al-Shafi ◽  
Kawsar Ahmed

Sign in / Sign up

Export Citation Format

Share Document