Estimation of Nuclear Reaction Model Parameter Covariances and the Related Neutron Induced Cross Sections with Physical Constraints

2014 ◽  
Vol 118 ◽  
pp. 336-340 ◽  
Author(s):  
C. De Saint Jean ◽  
E. Privas ◽  
P. Archier ◽  
G. Noguere
2009 ◽  
Author(s):  
G. Khuukhenkhuu ◽  
M. Odsuren ◽  
Dugersuren Dashdorj ◽  
Undraa Agvaanluvsan ◽  
Gary E. Mitchell

1987 ◽  
Vol 5 (2) ◽  
pp. 399-404 ◽  
Author(s):  
V. I. Kukulin ◽  
V. M. Krasnopol'sky ◽  
V. T. Voronchev

The work proposes a straightforward method for determining the nuclear reaction cross sections at extremely low energies (E ≃ 1–100 keV) on the basis of the measurements of the relative yield of fast particles which are products of the nuclear reactions in a target under laser compression. On the other hand, the proposed method makes it possible to find the averaged form of the ion velocity distribution function if the low-energy behaviour of the respective cross sections is known.


1967 ◽  
Vol 45 (10) ◽  
pp. 3275-3296 ◽  
Author(s):  
P. J. Brancazio ◽  
A. Gilbert ◽  
A. G. W. Cameron

A preliminary investigation of the effects on abundances in stellar surfaces of extensive nuclear bombardment required the calculation of more than 105 nuclear-reaction cross sections. It was necessary to develop simplified methods for using the statistical theory of nuclear reactions to make these calculations in order that the computer time should not be prohibitive. These methods are described here and the results are compared with experiment. The accuracy of the calculations is, in general, about as good as, or somewhat better than, that obtained in previous applications of the statistical theory, probably because the use of an accurate level density formula outweighed the crudity of other approximations.


2020 ◽  
Vol 13 ◽  
pp. 18
Author(s):  
P. Demetriou

Nuclear reaction rates play a crucial role in nuclear astrophysics. In the last decades there has been an enormous effort to measure reaction cross sections and extensive experimental databases have been compiled as a result. In spite of these efforts, most nuclear reaction network calculations still have to rely on theoretical predic- tions of experimentally unknown rates. In particular, in astrophysics applications such as the s-, r- and p-process nucleosynthesis involving a large number of nuclei and nuclear reactions (thousands). Moreover, most of the ingredients of the cal- culations of reaction rates have to be extrapolated to energy and/or mass regions that cannot be explored experimentally. For this reason it is important to develop global microscopic or semi-microscopic models of nuclear properties that give an accurate description of existing data and are reliable for predictions far away from the stability line. The need for more microscopic input parameters has led to new devel- opments within the Hartree-Fock-Bogoliubov method, some of which are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document