scholarly journals Thickness measurement of circular metallic film using single-frequency eddy current sensor

2021 ◽  
Vol 119 ◽  
pp. 102420
Author(s):  
Mingyang Lu ◽  
Xiaobai Meng ◽  
Ruochen Huang ◽  
Liming Chen ◽  
Anthony Peyton ◽  
...  
2017 ◽  
Vol 2 (3) ◽  
pp. 211-218
Author(s):  
Tengku Emrinaldi ◽  
Salomo Salomo ◽  
Yanuar Hamzah ◽  
Iwantono Iwantono ◽  
Lazuardi Umar

Abstrak Sensor arus eddy (eddy current) digunakan untuk pengukuran ketebalan logam khususnya logam non magnetik seperti alumunium.  Penelitian ini telah mengembangkan sensor eddy current berbahan PCB (printed circuit board) jenis FR4 yang memiliki ketebalan lapisan tembaga 35micron. Prototipe yang dihasilkan mempergunakan koil sensor dengan jumlah gulungan (n) 30 lilitan, diameter (Æ) 30mm, lebar dan jarak antar koil, (dkoil) 0,254mm dan tahanan (Rkoil) sebesar 4,26Ω. Respon sensor ketebalan pelat logam terhadap bahan uji dievaluasi dengan memberikan eksitasi frekuensi tunggal 700Khz, 1MHz dan 1.33MHz. Rangkaian ketebalan pelat telah mempergunakan rangkaian pengunci fasa (phase locked loop) dan mampu mengukur variasi ketebalan  mulai 0,2 mm sampai 2 mm, sementara jarak antara sensor dengan logam uji dijaga konstan 2 mm. Hasil pengukuran memberikan respon kurva U(t) dalam hubungan Kata-kata kunci:sensor eddy current, PCB FR4, material non magnetik, ketebalan logam, rangkaian phase locked loop Abstract Eddy current sensor is used to measure the thickness of metals, especially non-magnetic metals such as aluminum. This research has developed eddy current sensor made from PCB (printed circuit board) type FR4 which has 35micron copper layer thickness. The developed prototype uses a designed coil sensor with the number of winding (n) 30 turn, diameter () 30mm, width and distance between coils, (dkoil) 0.254 mm and coil resistance (Rkoil) of 4.26 Ω. The sensor response to the test material was evaluated by giving a single frequency excitation of 700 Khz, 1 MHz and 1.33 MHz. The plate thickness electronics has used a phase locked loop circuit and is capable to measure the thickness variations from 0.2 mm up to 2 mm, while the distance between the sensor coil and the test object was kept constant at 2 mm. The measurement results give the U (t) curve response in the exponential relationship. Keywords: eddy current sensor, PCB FR4, nonmagnetic material, thickness, phase locked loop circuit


2018 ◽  
Vol 96 (5-8) ◽  
pp. 2867-2873 ◽  
Author(s):  
Hocine Nebair ◽  
Ahmed Cheriet ◽  
Islam N. El Ghoul ◽  
Bachir Helifa ◽  
Samir Bensaid ◽  
...  

2013 ◽  
Vol 133 (5) ◽  
pp. 300-306
Author(s):  
Tsutomu Mizuno ◽  
Yuichi Asato ◽  
Sho Goto ◽  
Takashi Watanabe ◽  
Teruie Takemasu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2652
Author(s):  
Frank Wendler ◽  
Rohan Munjal ◽  
Muhammad Waqas ◽  
Robert Laue ◽  
Sebastian Härtel ◽  
...  

Modern production equipment is based on the results of quality control as well as process parameters. The magnetic anisotropy of materials is closely connected to internal mechanical stress by the Villari effect, and also to hardening effects due to plastic deformations, and could therefore provide an interesting basis for process control. Nevertheless, the analysis of anisotropic properties is extremely sensitive to sensor and workpiece misalignments, such as tilting. In this work, a novel eddy current sensor system is introduced, performing a non-contact measurement of the magnetic anisotropy of a workpiece and realizing a separation and correction of tilting effects. The measurement principle is demonstrated with the example of two samples with different magnetic anisotropy values induced by cold forming. Both samples are analyzed under different tilt angles between the sensor axis and the surface of the workpiece. In this work, digital signal processing is demonstrated on the acquired raw data in order to differentiate the effects of tilt and of anisotropy, with the use of preliminary results as an example of two prepared samples.


Sign in / Sign up

Export Citation Format

Share Document