Sampled FLDA for face recognition with single training image per person

2006 ◽  
Vol 69 (16-18) ◽  
pp. 2443-2445 ◽  
Author(s):  
Hongtao Yin ◽  
Ping Fu ◽  
Shengwei Meng
2018 ◽  
Vol 7 (4) ◽  
pp. 9 ◽  
Author(s):  
Shakir F. Kak ◽  
Firas M. Mustafa ◽  
Pedro R. Valente

In a recent past, face recognition was one of the most popular methods and successful application of image processing field which is widely used in security and biometric applications. The innovation of new approaches to face identification technologies is continuously subject to building much strong face recognition algorithms. Face recognition in real-time applications has been fast-growing challenging and interesting. The human face identification process is not trivial task especially different face lighting and poses are captured to be matched. In this study, the proposed method is tested using a benchmark ORL database that contains 400 images of 40 persons as the variant posse, lighting, etc. Discrete avelet Transform technique is applied on the ORL database to enhance the accuracy and the recognition rate. The best recognition rate result obtained is 99.25%, when tested using 9 training images and 1 testing image with cosine distance measurement. The recognition rate Increased when applying 2-level of DWT with the bior5.5 filter on training image database and the test image. For feature extraction and dimension reduction, PCA is used. Euclidean distance, Manhattan distance, and Cosine distance are Distance measures used for the matching process.


2013 ◽  
Vol 278-280 ◽  
pp. 1211-1214
Author(s):  
Jun Ying Zeng ◽  
Jun Ying Gan ◽  
Yi Kui Zhai

A fast sparse representation face recognition algorithm based on Gabor dictionary and SL0 norm is proposed in this paper. The Gabor filters, which could effectively extract local directional features of the image at multiple scales, are less sensitive to variations of illumination, expression and camouflage. SL0 algorithm, with the advantages of calculation speed,require fewer measurement values by continuously differentiable function approximation L0 norm and reconstructed sparse signal by minimizing the approximate L0 norm. The algorithm obtain the local feature face by extracting the Gabor face feature, reduce the dimensions by principal component analysis, fast sparse classify by the SL0 norm. Under camouflage condition, The algorithm block the Gabor facial feature and improve the speed of formation of the Gabor dictionary. The experimental results on AR face database show that the proposed algorithm can improve recognition speed and recognition rate to some extent and can generalize well to the face recognition, even with a few training image per class.


2017 ◽  
Vol 65 (4) ◽  
pp. 367-380 ◽  
Author(s):  
Jingcheng Ke ◽  
Yali Peng ◽  
Shigang Liu ◽  
Jun Li ◽  
Zhao Pei

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 43 ◽  
Author(s):  
Sang-Il Choi ◽  
Yonggeol Lee ◽  
Minsik Lee

There have been decades of research on face recognition, and the performance of many state-of-the-art face recognition algorithms under well-conditioned environments has become saturated. Accordingly, recent research efforts have focused on difficult but practical challenges. One such issue is the single sample per person (SSPP) problem, i.e., the case where only one training image of each person. While this problem is challenging because it is difficult to establish the within-class variation, working toward its solution is very practical because often only a few images of a person are available. To address the SSPP problem, we propose an efficient coupled bilinear model that generates virtual images under various illuminations using a single input image. The proposed model is inspired by the knowledge that the illuminance of an image is not sensitive to the poor quality of a subspace-based model, and it has a strong correlation to the image itself. Accordingly, a coupled bilinear model was constructed that retrieves the illuminance information from an input image. This information is then combined with the input image to estimate the texture information, from which we can generate virtual illumination conditions. The proposed method can instantly generate numerous virtual images of good quality, and these images can then be utilized to train the feature space for resolving SSPP problems. Experimental results show that the proposed method outperforms the existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document