Finite-time control of linear systems under time-varying sampling

2015 ◽  
Vol 151 ◽  
pp. 1327-1331 ◽  
Author(s):  
Ting Shi
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangyang Cao ◽  
Leipo Liu ◽  
Zhumu Fu ◽  
Xiaona Song ◽  
Shuzhong Song

This paper considers the guaranteed cost finite-time control for positive switched linear systems with time-varying delays. The definition of guaranteed cost finite-time boundedness is firstly given. Then, by using the mode-dependent average dwell time approach, a static output feedback law and a state feedback control law are constructed, respectively, and sufficient conditions are obtained to guarantee that the closed-loop system is guaranteed cost finite-time boundedness. Such conditions can be easily solved by linear programming. Finally, an example is given to illustrate the effectiveness of the proposed method.


Author(s):  
Kanya Rattanamongkhonkun ◽  
Radom Pongvuthithum ◽  
Chulin Likasiri

Abstract This paper addresses a finite-time regulation problem for time-varying nonlinear systems in p-normal form. This class of time-varying systems includes a well-known lower-triangular system and a chain of power integrator systems as special cases. No growth condition on time-varying uncertainties is imposed. The control law can guarantee that all closed-loop trajectories are bounded and well defined. Furthermore, all states converge to zero in finite time.


Sign in / Sign up

Export Citation Format

Share Document