Facial Image Synthesis and Super-Resolution With Stacked Generative Adversarial Network

2020 ◽  
Vol 402 ◽  
pp. 359-365 ◽  
Author(s):  
Jijun He ◽  
Jinjin Zheng ◽  
Yuan Shen ◽  
Yutang Guo ◽  
Hongjun Zhou
Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3119 ◽  
Author(s):  
Jingtao Li ◽  
Zhanlong Chen ◽  
Xiaozhen Zhao ◽  
Lijia Shao

In recent years, the generative adversarial network (GAN)-based image translation model has achieved great success in image synthesis, image inpainting, image super-resolution, and other tasks. However, the images generated by these models often have problems such as insufficient details and low quality. Especially for the task of map generation, the generated electronic map cannot achieve effects comparable to industrial production in terms of accuracy and aesthetics. This paper proposes a model called Map Generative Adversarial Networks (MapGAN) for generating multitype electronic maps accurately and quickly based on both remote sensing images and render matrices. MapGAN improves the generator architecture of Pix2pixHD and adds a classifier to enhance the model, enabling it to learn the characteristics and style differences of different types of maps. Using the datasets of Google Maps, Baidu maps, and Map World maps, we compare MapGAN with some recent image translation models in the fields of one-to-one map generation and one-to-many domain map generation. The results show that the quality of the electronic maps generated by MapGAN is optimal in terms of both intuitive vision and classic evaluation indicators.


Author(s):  
Amey Thakur

Abstract: Deep learning's breakthrough in the field of artificial intelligence has resulted in the creation of a slew of deep learning models. One of these is the Generative Adversarial Network, which has only recently emerged. The goal of GAN is to use unsupervised learning to analyse the distribution of data and create more accurate results. The GAN allows the learning of deep representations in the absence of substantial labelled training information. Computer vision, language and video processing, and image synthesis are just a few of the applications that might benefit from these representations. The purpose of this research is to get the reader conversant with the GAN framework as well as to provide the background information on Generative Adversarial Networks, including the structure of both the generator and discriminator, as well as the various GAN variants along with their respective architectures. Applications of GANs are also discussed with examples. Keywords: Generative Adversarial Networks (GANs), Generator, Discriminator, Supervised and Unsupervised Learning, Discriminative and Generative Modelling, Backpropagation, Loss Functions, Machine Learning, Deep Learning, Neural Networks, Convolutional Neural Network (CNN), Deep Convolutional GAN (DCGAN), Conditional GAN (cGAN), Information Maximizing GAN (InfoGAN), Stacked GAN (StackGAN), Pix2Pix, Wasserstein GAN (WGAN), Progressive Growing GAN (ProGAN), BigGAN, StyleGAN, CycleGAN, Super-Resolution GAN (SRGAN), Image Synthesis, Image-to-Image Translation.


2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


2021 ◽  
Vol 58 (8) ◽  
pp. 0810005
Author(s):  
查体博 Zha Tibo ◽  
罗林 Luo Lin ◽  
杨凯 Yang Kai ◽  
张渝 Zhang Yu ◽  
李金龙 Li Jinlong

Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Sign in / Sign up

Export Citation Format

Share Document