Vesicular glutamate transporter 3 is strongly upregulated in cochlear inner hair cells and spiral ganglion cells of developing circling mice

2015 ◽  
Vol 584 ◽  
pp. 320-324 ◽  
Author(s):  
Youngeun Lee ◽  
Hak Rim Kim ◽  
Seung Cheol Ahn
2008 ◽  
Vol 122 (11) ◽  
pp. 1151-1155 ◽  
Author(s):  
R Ramírez-Camacho ◽  
J R García-Berrocal ◽  
A Trinidad ◽  
J M Verdaguer ◽  
J Nevado

AbstractIntroduction:The ototoxic effects of cisplatin include loss of outer hair cells, degeneration of the stria vascularis and a decrease in the number of spiral ganglion cells. Scanning microscopy has shown balloon-like protrusions (blebs) of the plasma membrane of inner hair cells following cisplatin administration. The present study was undertaken to identify the possible role of inner and outer hair cell blebs in the pathogenesis of cisplatin-induced ototoxicity.Materials and methods:Twenty-five guinea pigs were injected with cisplatin and their hearing tested at different time-points, before sacrifice and examination with scanning electron microscopy.Results and analysis:Seven animals showed blebs in the inner hair cells at different stages. Hearing thresholds were lower in animals showing blebs.Discussion:Cisplatin seems to be able to induce changes in inner hair cells as well as in other structures in the organ of Corti. Blebbing observed in animals following cisplatin administration could play a specific role in the regulation of intracellular pressure.


1976 ◽  
Vol 54 (11) ◽  
pp. 1918-1926 ◽  
Author(s):  
F. Ramprashad

The population and density of the bipolar ganglion cells were determined from serial horizontal sections and graphic reconstructions of the cochleas of five captive harp seals. The [Formula: see text]-turn spiral ganglion forms a continuous ring throughout its course except at the extreme basal end where it is narrowest. The nerve cell body is 25 μm long (16.1–38.8 μm) and 16 μm wide (10–24 μm). The average number of ganglion cells present was 57 185 (46 389 – 70 952), with a corrected total number of 52 000 ganglion cells. Two peaks are present in the density curve of the ganglion cells. The first was at 1–1.5 mm and the second at 20 mm, where 2620 cells/mm2 and 2250 cells/mm2 respectively are present.The ratio of total ganglion cells to total sensory hair cells was about 3:1. This ratio was not uniform throughout the length of the cochlea; it was 6:1 at 2–3 mm from the basal end and declined gradually to 3:1 at the apical end. The average total of ganglion cells in the harp seal exceeded the average value in humans, but did not exceed the values found in dolphins.


2007 ◽  
Vol 232 (1-2) ◽  
pp. 29-43 ◽  
Author(s):  
Mark A. Parker ◽  
Deborah A. Corliss ◽  
Brianna Gray ◽  
Julia K. Anderson ◽  
Richard P. Bobbin ◽  
...  

1976 ◽  
Vol 85 (6) ◽  
pp. 740-751 ◽  
Author(s):  
David J. Lim

Using guinea pigs and chinchillas as experimental animals, modes and patterns of sensory cell damage by acoustic hyperstimulation and kanamycin intoxication were compared. In general, outer hair cells were more vulnerable to both acoustic trauma and ototoxicity (particularly in the basal turn) than inner hair cells. However, in kanamycin ototoxicity, the inner hair cells were more vulnerable in the apical coil. Nerve endings and nerve fibers generally were resistant to both acoustic trauma and kanamycin intoxication, and their degeneration appears to be secondary to the sensory cell degeneration. A large number of unmyelinated nerve fibers were seen in both the organ of Corti and the osseous spiral lamina even three months after the organ of Corti had been completely degenerated by ototoxicity. The total number of unmyelinated and myelinated nerve fibers in the osseous spiral lamina far exceeded the scanty surviving ganglion cells in Rosenthal's canal, indicating the possibility of regeneration of these fibers following kanamycin intoxication. The remaining few ganglion cells were mainly type II or type III cells, and a majority of the type I ganglion cells appeared to be degenerated. Signs of strial damage were observed in both acoustic trauma and ototoxicity, but their pattern did not correlate well with that of sensory cell degeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yanzhuo Zhang ◽  
Zhe Lv ◽  
Yudong Liu ◽  
Huan Cao ◽  
Jianwang Yang ◽  
...  

A growing amount of evidence has confirmed the crucial role of the prolyl isomerase PIN1 in aging and age-related diseases. However, the mechanism of PIN1 in age-related hearing loss (ARHL) remains unclear. Pathologically, ARHL is primarily due to the loss and dysfunction of hair cells (HCs) and spiral ganglion cells (SGCs) in the cochlea. Therefore, in this study, we aimed to investigate the role of PIN1 in protecting hair cells and auditory HEI-OC1 cells from senescence. Enzyme-linked immunosorbent assays, immunohistochemistry, and immunofluorescence were used to detect the PIN1 protein level in the serum of ARHL patients and C57BL/6 mice in different groups, and in the SGCs and HCs of young and aged C57BL/6 mice. In addition, a model of HEI-OC1 cell senescence induced by H2O2 was used. Adult C57BL/6 mice were treated with juglone, or juglone and NAC, for 4 weeks. Interestingly, we found that the PIN1 protein expression decreased in the serum of patients with ARHL, in senescent HEI-OC1 cells, and in the cochlea of aged mice. Moreover, under H2O2 and juglone treatment, a large amount of ROS was produced, and phosphorylation of p53 was induced. Importantly, PIN1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α. Overexpression of PIN1 reversed the increased level of p-p53 and rescued HEI-OC1 cells from senescence. Furthermore, PIN1 mediated cellular senescence by the PI3K/Akt/mTOR signaling pathway. In vivo data from C57BL/6 mice showed that treatment with juglone led to hearing loss. Taken together, these findings demonstrated that PIN1 may act as a vital modulator in hair cell and HEI-OC1 cell senescence.


2008 ◽  
Vol 28 (9) ◽  
pp. 2110-2118 ◽  
Author(s):  
N. Obholzer ◽  
S. Wolfson ◽  
J. G. Trapani ◽  
W. Mo ◽  
A. Nechiporuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document