The increase of intrinsic excitability of layer V pyramidal cells in the prelimbic medial prefrontal cortex of adult mice after peripheral inflammation

2016 ◽  
Vol 611 ◽  
pp. 40-45 ◽  
Author(s):  
Xiao-Bo Wu ◽  
Biao Liang ◽  
Yong-Jing Gao
2000 ◽  
Vol 83 (5) ◽  
pp. 3031-3041 ◽  
Author(s):  
Chris M. Hempel ◽  
Kenichi H. Hartman ◽  
X.-J. Wang ◽  
Gina G. Turrigiano ◽  
Sacha B. Nelson

Short-term synaptic plasticity, in particular short-term depression and facilitation, strongly influences neuronal activity in cerebral cortical circuits. We investigated short-term plasticity at excitatory synapses onto layer V pyramidal cells in the rat medial prefrontal cortex, a region whose synaptic dynamic properties have not been systematically examined. Using intracellular and extracellular recordings of synaptic responses evoked by stimulation in layers II/III in vitro, we found that short-term depression and short-term facilitation are similar to those described previously in other regions of the cortex. In additition, synapses in the prefrontal cortex prominently express augmentation, a longer lasting form of short-term synaptic enhancement. This consists of a 40–60% enhancement of synaptic transmission which lasts seconds to minutes and which can be induced by stimulus trains of moderate duration and frequency. Synapses onto layer III neurons in the primary visual cortex express substantially less augmentation, indicating that this is a synapse-specific property. Intracellular recordings from connected pairs of layer V pyramidal cells in the prefrontal cortex suggest that augmentation is a property of individual synapses that does not require activation of multiple synaptic inputs or neuromodulatory fibers. We propose that synaptic augmentation could function to enhance the ability of a neuronal circuit to sustain persistent activity after a transient stimulus. This idea is explored using a computer simulation of a simplified recurrent cortical network.


2021 ◽  
Author(s):  
Wei Cai ◽  
Shu-Su Liu ◽  
Bao-Ming Li ◽  
Xue-Han Zhang

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rats. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in the mPFC. Pharmacological block of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells. Such facilitation effect on mIPSCs required presynaptic Ca2+ influx and reversed by high-dose cAMP. Such facilitation did not exist in the presence of the T-type Ca2+ channel selective blockers. Immunofluorescence staining revealed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in the mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells through restricting presynaptic Ca2+ entry.


Biology Open ◽  
2021 ◽  
Author(s):  
Wei Cai ◽  
Shu-Su Liu ◽  
Bao-Ming Li ◽  
Xue-Han Zhang

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rodents. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in rat mPFC. The pharmacological blockade of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells, whereas potentiation of HCN channels reversely decreases the frequency of mIPSCs. Furthermore, such facilitation effect on mIPSC frequency required presynaptic Ca2+ influx. Immunofluorescence staining showed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells by restricting presynaptic Ca2+ entry.


Sign in / Sign up

Export Citation Format

Share Document