basket cells
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 25)

H-INDEX

42
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Mark N. Wallace ◽  
Trevor M. Shackleton ◽  
Zoe Thompson ◽  
Alan R. Palmer

We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7–9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets.


2021 ◽  
pp. 153575972110536
Author(s):  
Barna Dudok ◽  
Peter M. Klein ◽  
Ivan Soltesz

Epileptic seizures are associated with excessive neuronal spiking. Perisomatic γ-aminobutyric acid (GABA)ergic interneurons specifically innervate the subcellular domains of postsynaptic excitatory cells that are critical for spike generation. With a revolution in transcriptomics-based cell taxonomy driving the development of novel transgenic mouse lines, selectively monitoring and modulating previously elusive interneuron types is becoming increasingly feasible. Emerging evidence suggests that the three types of hippocampal perisomatic interneurons, axo-axonic cells, along with parvalbumin- and cholecystokinin-expressing basket cells, each follow unique activity patterns in vivo, suggesting distinctive roles in regulating epileptic networks.


Biology Open ◽  
2021 ◽  
Author(s):  
Wei Cai ◽  
Shu-Su Liu ◽  
Bao-Ming Li ◽  
Xue-Han Zhang

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rodents. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in rat mPFC. The pharmacological blockade of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells, whereas potentiation of HCN channels reversely decreases the frequency of mIPSCs. Furthermore, such facilitation effect on mIPSC frequency required presynaptic Ca2+ influx. Immunofluorescence staining showed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells by restricting presynaptic Ca2+ entry.


2021 ◽  
pp. JN-RM-0871-21
Author(s):  
Kristina D. Micheva ◽  
Marianna Kiraly ◽  
Marc M. Perez ◽  
Daniel V. Madison

2021 ◽  
Author(s):  
Birgit Kriener ◽  
Hua Hu ◽  
Koen Vervaeke

Dendrites are important determinants of the input-output relationship of single neurons, but their role in network computations is not well understood. Here, we used a combination of dendritic patch-clamp recordings and in silico modeling to determine how dendrites of parvalbumin (PV)- expressing basket cells contribute to network oscillations in the gamma frequency band. Simultaneous soma-dendrite recordings from PV basket cells in the dentate gyrus revealed that the slope, or gain, of the dendritic input-output relationship is exceptionally low, thereby reducing the cell's sensitivity to changes in its input. By simulating gamma oscillations in detailed network models, we demonstrate that the low gain is key to increase spike synchrony in PV neuron assemblies when cells are driven by spatially and temporally heterogeneous synaptic input. These results highlight the role of dendritic computations in synchronized network oscillations.


2021 ◽  
Author(s):  
Wei Cai ◽  
Shu-Su Liu ◽  
Bao-Ming Li ◽  
Xue-Han Zhang

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rats. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in the mPFC. Pharmacological block of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells. Such facilitation effect on mIPSCs required presynaptic Ca2+ influx and reversed by high-dose cAMP. Such facilitation did not exist in the presence of the T-type Ca2+ channel selective blockers. Immunofluorescence staining revealed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in the mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells through restricting presynaptic Ca2+ entry.


2021 ◽  
pp. JN-RM-1207-20
Author(s):  
Ting Feng ◽  
Christian Alicea ◽  
Vincent Pham ◽  
Amanda Kirk ◽  
Simon Pieraut

2021 ◽  
Author(s):  
Kristina D. Micheva ◽  
Marianna Kiraly ◽  
Marc M. Perez ◽  
Daniel V. Madison

AbstractParvalbumin-containing (PV+) basket cells are specialized cortical interneurons that regulate the activity of local neuronal circuits with high temporal precision and reliability. PV+ interneuron disfunction is associated with numerous psychiatric disorders, including schizophrenia and autism spectrum disorders. To understand how the PV+ interneuron connectivity underlying their functional properties is established during development, we used array tomography to map pairs of synaptically connected PV+ interneurons and postsynaptic neurons from the neocortex of mice of both sexes. We focused on the axon-myelin unit of the PV+ interneuron and quantified the number of synapses onto the postsynaptic neuron, length of connecting axonal paths, and their myelination at different time points between 2 weeks and 7 months of age. We find that myelination of the proximal axon occurs very rapidly during the third postnatal week and precedes a massive synapse pruning which takes place in the 4th postnatal week leading to about three-fold reduction of synaptic contacts made by the PV+ interneuron on its postsynaptic partner. Autapses, the synapses that PV+ interneurons form on themselves, however, are not subjected to pruning. Axon reorganizations continue beyond postnatal month 2, with the postsynaptic targets of PV+ interneurons gradually shifting to more proximal locations, and the length of axonal paths and their myelin becoming conspicuously uniform per connection. These continued microcircuit refinements likely provide the structural substrate for the robust inhibitory effects and fine temporal precision of PV+ basket cells.Significance statementThe axon of adult parvalbumin-containing (PV+) interneurons is highly specialized for fast and reliable neurotransmission. It is myelinated and forms synapses mostly onto the cell bodies and proximal dendrites of postsynaptic neurons for maximal impact. In this study we follow the development of the PV+ interneuron axon, its myelination and synapse formation, revealing a rapid sequence of axonal reorganization, myelination of the PV+ interneuron proximal axon, and subsequent pruning of almost two-thirds of the synapses in an individual connection. This is followed by a prolonged period of axon refinement and additional myelination leading to a remarkable precision of connections in the adult mouse cortex, consistent with the temporal precision and fidelity of PV+ interneuron action.


2020 ◽  
Author(s):  
Hideki Miwa ◽  
Ken Kobayashi ◽  
Shinobu Hirai ◽  
Mitsuhiko Yamada ◽  
Masahiko Watanabe ◽  
...  

Abstract Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system, synthesized by two isoforms of glutamate decarboxylase (GAD): GAD65 and GAD67. GABA may act as a trophic factor during brain development, but its contribution to the development and maturation of cerebellar neural circuits is not known. To understand the roles of GABA in cerebellar development and associated functions in motor coordination and balance, we examined GAD65 conventional knock out (KO) mice and mice in which GAD67 was eliminated in parvalbumin-expressing neurons ( PV-Cre ; GAD67 flox/flox mice). We found aberrant subcellular localization of the Shaker-type K channel Kv1.1 in basket cell collaterals of PV-Cre ; GAD67 flox/flox mice and abnormal projections from basket cells to Purkinje cells in both mouse strains. Furthermore, PV-Cre ; GAD67 flox/flox mice exhibited abnormal motor coordination in the rotarod test. These results indicate that GABA signaling in the cerebellum during development is critical for establishing appropriate connections between basket cells and Purkinje cells and is associated with motor coordination in mice.


NeuroSci ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 85-97
Author(s):  
Brunello Tirozzi ◽  
Fabrizio Londei ◽  
Simona Gianani

Depolarization block is such a mechanism that the firing activity of a neuronal system is stopped for particular values of the input current. It is important to block epilepsy or unpleasant firing rates. We investigate this property for a non-linear model of CA3 hippocampal neurons under the action of endocannabinoid transmitters. The aim is to discover if they induce depolarization block, a property already seen in other neuronal models and observed in some experiments, signifying that the neural population increases its spiking frequency as some main parameter changes until reaching a situation of no firing. The results is theoretical and it could be useful for investigating real system of neurons of the hippocampus. In some papers it has been shown that this property is connected with bistability, which means that the system has two equilibrium states for some ranges of its parameters. Endocannabinoids influence the learning and memory process and so we concentrate our attention on the CA3 neurons of the hippocampus. We find bistability and depolarization block for the considered model, which is a generalization of the Wilson-Cowan model. The model describes average properties of neurons divided in three classes: the excitatory neuronal population (CA3 neurons) and two types of inhibitory neuron populations (basket cells). The exogenous concentration of cannabinoids is the parameter that controls bistability. This result can be used for an experiment that could give information for medical therapy. We study the time evolution of the synapses connecting the excitatory population with two types of basket cells. The evolution of synaptic weights is considered to be a toy model of the learning process. But this model cannot encompass the complexity and diversity of exogenous and endogenous endocannabinoids effects in vivo.


Sign in / Sign up

Export Citation Format

Share Document