Effects of Cognitive workload on heart and locomotor rhythms coupling

2021 ◽  
pp. 136140
Author(s):  
Daniela De Bartolo ◽  
Chiara De Giorgi ◽  
Luca Compagnucci ◽  
Viviana Betti ◽  
Gabriella Antonucci ◽  
...  
2003 ◽  
Author(s):  
Deborah A. Boehm-Davis ◽  
Wayne D. Gray ◽  
Leonard Adelman ◽  
Sandra Marshall ◽  
Robert Pozos

Author(s):  
Lauren R. Kennedy-Metz ◽  
Roger D. Dias ◽  
Rithy Srey ◽  
Geoffrey C. Rance ◽  
Heather M. Conboy ◽  
...  

Objective This novel preliminary study sought to capture dynamic changes in heart rate variability (HRV) as a proxy for cognitive workload among perfusionists while operating the cardiopulmonary bypass (CPB) pump during real-life cardiac surgery. Background Estimations of operators’ cognitive workload states in naturalistic settings have been derived using noninvasive psychophysiological measures. Effective CPB pump operation by perfusionists is critical in maintaining the patient’s homeostasis during open-heart surgery. Investigation into dynamic cognitive workload fluctuations, and their relationship with performance, is lacking in the literature. Method HRV and self-reported cognitive workload were collected from three Board-certified cardiac perfusionists ( N = 23 cases). Five HRV components were analyzed in consecutive nonoverlapping 1-min windows from skin incision through sternal closure. Cases were annotated according to predetermined phases: prebypass, three phases during bypass, and postbypass. Values from all 1min time windows within each phase were averaged. Results Cognitive workload was at its highest during the time between initiating bypass and clamping the aorta (preclamp phase during bypass), and decreased over the course of the bypass period. Conclusion We identified dynamic, temporal fluctuations in HRV among perfusionists during cardiac surgery corresponding to subjective reports of cognitive workload. Not only does cognitive workload differ for perfusionists during bypass compared with pre- and postbypass phases, but differences in HRV were also detected within the three bypass phases. Application These preliminary findings suggest the preclamp phase of CPB pump interaction corresponds to higher cognitive workload, which may point to an area warranting further exploration using passive measurement.


2021 ◽  
Vol 3 (1) ◽  
pp. 87-97
Author(s):  
Nicola M. Ludin ◽  
Alma Orts-Sebastian ◽  
James F. Cheeseman ◽  
Janelle Chong ◽  
Alan F. Merry ◽  
...  

Following general anaesthesia (GA), patients frequently experience sleep disruption and fatigue, which has been hypothesized to result at least in part by GA affecting the circadian clock. Here, we provide the first comprehensive time-dependent analysis of the effects of the commonly administered inhalational anaesthetic, isoflurane, on the murine circadian clock, by analysing its effects on (a) behavioural locomotor rhythms and (b) PER2::LUC expression in the suprachiasmatic nuclei (SCN) of the mouse brain. Behavioural phase shifts elicited by exposure of mice (n = 80) to six hours of GA (2% isoflurane) were determined by recording wheel-running rhythms in constant conditions (DD). Phase shifts in PER2::LUC expression were determined by recording bioluminescence in organotypic SCN slices (n = 38) prior to and following GA exposure (2% isoflurane). Full phase response curves for the effects of GA on behaviour and PER2::LUC rhythms were constructed, which show that the effects of GA are highly time-dependent. Shifts in SCN PER2 expression were much larger than those of behaviour (c. 0.7 h behaviour vs. 7.5 h PER2::LUC). We discuss the implications of this work for understanding how GA affects the clock, and how it may inform the development of chronotherapeutic strategies to reduce GA-induced phase-shifting in patients.


2021 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Álvaro Fernández-Rodríguez ◽  
Ricardo Ron-Angevin ◽  
Ernesto J. Sanz-Arigita ◽  
Antoine Parize ◽  
Juliette Esquirol ◽  
...  

Studies so far have analyzed the effect of distractor stimuli in different types of brain–computer interface (BCI). However, the effect of a background speech has not been studied using an auditory event-related potential (ERP-BCI), a convenient option when the visual path cannot be adopted by users. Thus, the aim of the present work is to examine the impact of a background speech on selection performance and user workload in auditory BCI systems. Eleven participants tested three conditions: (i) auditory BCI control condition, (ii) auditory BCI with a background speech to ignore (non-attentional condition), and (iii) auditory BCI while the user has to pay attention to the background speech (attentional condition). The results demonstrated that, despite no significant differences in performance, shared attention to auditory BCI and background speech required a higher cognitive workload. In addition, the P300 target stimuli in the non-attentional condition were significantly higher than those in the attentional condition for several channels. The non-attentional condition was the only condition that showed significant differences in the amplitude of the P300 between target and non-target stimuli. The present study indicates that background speech, especially when it is attended to, is an important interference that should be avoided while using an auditory BCI.


Sign in / Sign up

Export Citation Format

Share Document