An alternative explanation of movement encoding in monkey's primary motor cortex using joint angular velocity and joint torque during reaching tasks

2010 ◽  
Vol 68 ◽  
pp. e149
Author(s):  
Hiroshi Ueda ◽  
Naoki Arai ◽  
Yuji Tamura ◽  
Eizo Miyashita
2007 ◽  
Vol 97 (4) ◽  
pp. 2887-2899 ◽  
Author(s):  
Troy M. Herter ◽  
Isaac Kurtzer ◽  
D. William Cabel ◽  
Kirk A. Haunts ◽  
Stephen H. Scott

The present study examined neural activity in the shoulder/elbow region of primary motor cortex (M1) during a whole-limb postural task. By selectively imposing torques at the shoulder, elbow, or both joints we addressed how neurons represent changes in torque at a single joint, multiple joints, and their interrelation. We observed that similar proportions of neurons reflected changes in torque at the shoulder, elbow, and both joints and these neurons were highly intermingled across the cortical surface. Most torque-related neurons were reciprocally excited and inhibited (relative to their unloaded baseline activity) by opposing flexor and extensor torques at a single joint. Although coexcitation/coinhibition was occasionally observed at a single joint, it was rarely observed at both joints. A second analysis assessed the relationship between single-joint and multijoint activity. In contrast to our previous observations, we found that neither linear nor vector summation of single-joint activities could capture the breadth of neural responses to multijoint torques. Finally, we studied the neurons' directional tuning across all the torque conditions, i.e., in joint-torque space. Our population of M1 neurons exhibited a strong bimodal distribution of preferred-torque directions (PTDs) that was biased toward shoulder-extensor/elbow-flexor (whole-limb flexor) and shoulder-flexor/elbow-extensor (whole-limb extensor) torques. Notably, we recently observed a similar bimodal distribution of PTDs in a sample of proximal arm muscles. This observation illustrates the intimate relationship between M1 and the motor periphery.


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160063 ◽  
Author(s):  
Pablo Arias ◽  
Yoanna Corral-Bergantiños ◽  
Verónica Robles-García ◽  
Antonio Madrid ◽  
Antonio Oliviero ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Brian M Dekleva ◽  
Pavan Ramkumar ◽  
Paul A Wanda ◽  
Konrad P Kording ◽  
Lee E Miller

Every movement we make represents one of many possible actions. In reaching tasks with multiple targets, dorsal premotor cortex (PMd) appears to represent all possible actions simultaneously. However, in many situations we are not presented with explicit choices. Instead, we must estimate the best action based on noisy information and execute it while still uncertain of our choice. Here we asked how both primary motor cortex (M1) and PMd represented reach direction during a task in which a monkey made reaches based on noisy, uncertain target information. We found that with increased uncertainty, neurons in PMd actually enhanced their representation of unlikely movements throughout both planning and execution. The magnitude of this effect was highly variable across sessions, and was correlated with a measure of the monkeys’ behavioral uncertainty. These effects were not present in M1. Our findings suggest that PMd represents and maintains a full distribution of potentially correct actions.


1998 ◽  
Vol 38 (5) ◽  
pp. 769
Author(s):  
Ho Kyu Lee ◽  
Jin Suh Kim ◽  
Youn Mee Hwang ◽  
Myung Joon Lee ◽  
Soo Mee Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document